# X7R Dielectric, 6.3 – 250 VDC (Commercial Grade)



#### **Overview**

KEMET's X7R dielectric features a 125°C maximum operating temperature and is considered "temperature stable." The Electronics Components, Assemblies & Materials Association (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling applications or

for frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage and boasts a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to  $\pm 15\%$  from  $-55^{\circ}$ C to  $+125^{\circ}$ C.

#### **Benefits**

- -55°C to +125°C operating temperature range
- · Lead (Pb)-Free, RoHS, and REACH Compliant
- · Temperature stable dielectric
- EIA 0402, 0603, 0805, 1206, 1210, 1808, 1812, 1825, 2220, and 2225 case sizes
- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 35 V, 50 V, 100 V, 200 V, and 250 V
- Capacitance offerings ranging from 10 pF to 47 μF
- Available capacitance tolerances of ±5%, ±10%, and ±20%
- Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability
- SnPb termination finish option available upon request (5% Pb minimum)

### **Applications**

Typical applications include decoupling, bypass, filtering and transient voltage suppression.

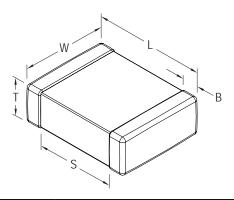


# **Ordering Information**

| С       | 1206                                                                         | С                                     | 106                                       | M                                                 | 4                                                                                          | R          | Α                       | С                                  | TU                                                  |
|---------|------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------|------------|-------------------------|------------------------------------|-----------------------------------------------------|
| Ceramic | Case Size<br>(L" x W")                                                       | Specification/<br>Series <sup>1</sup> | Capacitance<br>Code (pF)                  | Capacitance<br>Tolerance                          | Rated Voltage (VDC)                                                                        | Dielectric | Failure Rate/<br>Design | Termination<br>Finish <sup>2</sup> | Packaging/<br>Grade (C-Spec)                        |
|         | 0402<br>0603<br>0805<br>1206<br>1210<br>1808<br>1812<br>1825<br>2220<br>2225 | C = Standard                          | Two significant digits + number of zeros. | $J = \pm 5\%$<br>$K = \pm 10\%$<br>$M = \pm 20\%$ | 9 = 6.3<br>8 = 10<br>4 = 16<br>3 = 25<br>6 = 35<br>5 = 50<br>1 = 100<br>2 = 200<br>A = 250 | R = X7R    | A = N/A                 | C = 100%<br>Matte Sn               | See "Packaging C-Spec Ordering Options Table" below |

<sup>&</sup>lt;sup>1</sup> Flexible termination option is available. Please see FT-CAP product bulletin C1013\_X7R\_FT-CAP\_SMD.

 $<sup>^{\</sup>rm 2}$  Additional termination finish options may be available. Contact KEMET for details.




### **Packaging C-Spec Ordering Options Table**

| Packaging Type <sup>1</sup>                   | Packaging/Grade<br>Ordering Code (C-Spec) |
|-----------------------------------------------|-------------------------------------------|
| Bulk Bag / Unmarked                           | Not required (Blank)                      |
| 7" Reel / Unmarked                            | TU                                        |
| 7" Reel / Marked                              | TM                                        |
| 7" Reel / Unmarked / 2 mm pitch <sup>2</sup>  | 7081                                      |
| 13" Reel / Unmarked / 2 mm pitch <sup>2</sup> | 7082                                      |

<sup>&</sup>lt;sup>1</sup> Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.

## **Dimensions – Millimeters (Inches)**



| EIA Size<br>Code | Metric<br>Size<br>Code | L<br>Length                | W<br><b>Width</b>          | T<br>Thickness | B<br>Bandwidth             | S<br>Separation<br>Minimum | Mounting<br>Technique           |
|------------------|------------------------|----------------------------|----------------------------|----------------|----------------------------|----------------------------|---------------------------------|
| 0402             | 1005                   | 1.00 (0.040) ±0.05 (0.002) | 0.50 (0.020) ±0.05 (0.002) |                | 0.30 (0.012) ±0.10 (0.004) | 0.30 (0.012)               | Solder Reflow<br>Only           |
| 0603             | 1608                   | 1.60 (0.063) ±0.15 (0.006) | 0.80 (0.032) ±0.15 (0.006) |                | 0.35 (0.014) ±0.15 (0.006) | 0.70 (0.028)               |                                 |
| 0805             | 2012                   | 2.00 (0.079) ±0.20 (0.008) | 1.25 (0.049) ±0.20 (0.008) |                | 0.50 (0.02) ±0.25 (0.010)  | 0.75 (0.030)               | Solder Wave or<br>Solder Reflow |
| 1206             | 3216                   | 3.20 (0.126) ±0.20 (0.008) | 1.60 (0.063) ±0.20 (0.008) |                | 0.50 (0.02) ±0.25 (0.010)  |                            |                                 |
| 1210¹            | 3225                   | 3.20 (0.126) ±0.20 (0.008) | 2.50 (0.098) ±0.20 (0.008) | See Table 2    | 0.50 (0.02) ±0.25 (0.010)  |                            |                                 |
| 1808             | 4520                   | 4.70 (0.185) ±0.50 (0.020) | 2.00 (0.079) ±0.20 (0.008) | for Thickness  | 0.60 (0.024) ±0.35 (0.014) |                            |                                 |
| 1812             | 4532                   | 4.50 (0.177) ±0.30 (0.012) | 3.20 (0.126) ±0.30 (0.012) |                | 0.60 (0.024) ±0.35 (0.014) | N/A                        | Solder Reflow                   |
| 1825             | 4564                   | 4.50 (0.177) ±0.30 (0.012) | 6.40 (0.252) ±0.40 (0.016) |                | 0.60 (0.024) ±0.35 (0.014) |                            | Only                            |
| 2220             | 5650                   | 5.70 (0.224) ±0.40 (0.016) | 5.00 (0.197) ±0.40 (0.016) |                | 0.60 (0.024) ±0.35 (0.014) |                            |                                 |
| 2225             | 5664                   | 5.60 (0.220) ±0.40 (0.016) | 6.40 (0.248) ±0.40 (0.016) |                | 0.60 (0.024) ±0.35 (0.014) |                            |                                 |

 $<sup>^{1}</sup>$  For capacitance values ≥ 4.7 μF add 0.02 (0.001) to the width tolerance dimension and 0.10 (0.004) to the length tolerance dimension.

<sup>&</sup>lt;sup>1</sup> The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking".

<sup>&</sup>lt;sup>2</sup> The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".



### Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

### **Environmental Compliance**

Lead (Pb)-Free, RoHS, and REACH compliant without exemptions.

### **Electrical Parameters/Characteristics**

| Item                                                               | Parameters/Characteristics                                                                  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Operating Temperature Range                                        | -55°C to +125°C                                                                             |
| Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC) | ±15%                                                                                        |
| Aging Rate (Maximum % Capacitance Loss/Decade Hour)                | 3.0%                                                                                        |
| Dielectric Withstanding Voltage (DWV)                              | 250% of rated voltage<br>(5 ±1 second and charge/discharge not exceeding 50 mA)             |
| Dissipation Factor (DF) Maximum Limit at 25°C                      | See Dissipation Factor (DF) Limits Table                                                    |
| Insulation Resistance (IR) Limit at 25°C                           | See Insulation Resistance Limit Table<br>(Rated voltage applied for 120 ±5 seconds at 25°C) |

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 48 or 1,000 hours. Please refer to a part number specific datasheet for referee time details.

To obtain IR limit, divide  $M\Omega$ - $\mu$ F value by the capacitance and compare to  $G\Omega$  limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz  $\pm 50$  Hz and 1.0  $\pm 0.2$  Vrms if capacitance  $\leq 10~\mu F$ 

120 Hz  $\pm 10$  Hz and 0.5  $\pm 0.1$  Vrms if capacitance > 10  $\mu F$ 

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

## **Insulation Resistance Limit Table (X7R Dielectric)**

| EIA Case Size | 1,000 Megohm<br>Microfarads or 100 GΩ | 500 Megohm<br>Microfarads or 10 GΩ |
|---------------|---------------------------------------|------------------------------------|
| 0201          | N/A                                   | ALL                                |
| 0402          | < 0.012 µF                            | ≥ 0.012 µF                         |
| 0603          | < 0.047 µF                            | ≥ 0.047 µF                         |
| 0805          | < 0.15 µF                             | ≥ 0.15 µF                          |
| 1206          | < 0.47 µF                             | ≥ 0.47 µF                          |
| 1210          | < 0.39 µF                             | ≥ 0.39 µF                          |
| 1808          | ALL                                   | N/A                                |
| 1812          | < 2.2 µF                              | ≥ 2.2 µF                           |
| 1825          | ALL                                   | N/A                                |
| 2220          | < 10 µF                               | ≥ 10 µF                            |
| 2225          | ALL                                   | N/A                                |



### **Post Environmental Limits**

|            | High Tempo | erature Life, E     | Biased Humid         | lity, Moisture                       | Resistance           |                          |
|------------|------------|---------------------|----------------------|--------------------------------------|----------------------|--------------------------|
| Dielectric | Case Size  | Rated DC<br>Voltage | Capacitance<br>Value | Dissipation<br>Factor<br>(Maximum %) | Capacitance<br>Shift | Insulation<br>Resistance |
|            |            | < 16                |                      | 7.5                                  |                      |                          |
|            | 0402       | 16 / 25             | All                  | 5.0                                  |                      |                          |
|            |            | > 25                |                      | 3.0                                  |                      |                          |
|            |            | < 16                |                      | 7.5                                  |                      |                          |
|            |            | 16 / 25             | < 1.0 µF             | 5.0                                  |                      |                          |
|            | 0603       | > 25                |                      | 3.0                                  |                      |                          |
|            |            | < 16<br>16 / 25     | ≥ 1.0 µF             | 20.0                                 |                      |                          |
|            |            | < 16                |                      | 7.5                                  | 1                    |                          |
|            |            | 16 / 25             | < 2.2 µF             | 5.0                                  |                      |                          |
|            | 0005       | > 25                | < 1.0 µF             | 3.0                                  |                      |                          |
|            | 0805       | < 16                |                      |                                      |                      |                          |
|            |            | 16 / 25             | ≥ 2.2 µF             | 20.0                                 |                      |                          |
| VZD        |            | > 25                | ≥ 1.0 µF             |                                      | . 2007               | 10% of Initial           |
| X7R        |            | < 16                |                      | 7.5                                  | ± 20%                | Limit                    |
|            |            | 16 / 25             | < 10 µF              | 5.0                                  |                      |                          |
|            | 1206       | > 25                |                      | 3.0                                  |                      |                          |
|            | 1200       | 35 / 50             | ≥ 2.2 µF             |                                      |                      |                          |
|            |            | < 16                | ≥ 10 µF              | 20.0                                 |                      |                          |
|            |            | 16 / 25             | ≥ 10 μr              |                                      |                      |                          |
|            |            | < 16                |                      | 7.5                                  |                      |                          |
|            |            | 16 / 25             | < 22 µF              | 5.0                                  |                      |                          |
|            | 1210       | > 25                |                      | 3.0                                  |                      |                          |
|            |            | < 16                | ≥ 22 µF              | 20.0                                 |                      |                          |
|            |            | 16 / 25             | = 22 µr              | 20.0                                 |                      |                          |
|            |            | < 16                |                      | 7.5                                  |                      |                          |
|            | 1808-2225  | 16 / 25             | All                  | 5.0                                  |                      |                          |
|            |            | > 25                |                      | 3.5                                  |                      |                          |



# **Dissipation Factor (DF) Limit Table**

| EIA Case<br>Size | Rated DC<br>Voltage | Capacitance | Dissipation<br>Factor<br>(Maximum %) |
|------------------|---------------------|-------------|--------------------------------------|
|                  | < 16                |             | 5.0                                  |
| 0402             | 16 / 25             | All         | 3.5                                  |
|                  | > 25                |             | 2.5                                  |
|                  | < 16                |             | 5.0                                  |
|                  | 16 / 25             | < 1.0 µF    | 3.5                                  |
| 0603             | > 25                |             | 2.5                                  |
|                  | < 16                | ≥ 1.0 µF    | 10.0                                 |
|                  | 16 / 25             | = 1.0 μ1    | 10.0                                 |
|                  | < 16                | < 2.2 µF    | 5.0                                  |
|                  | 16 / 25             | < 2.2 μι    | 3.5                                  |
| 0805             | > 25                | < 1.0 µF    | 2.5                                  |
| 0003             | < 16                | ≥ 2.2 µF    |                                      |
|                  | 16 / 25             | ≥ 2.2 μr    | 10.0                                 |
|                  | > 25                | ≥ 1.0 µF    |                                      |
|                  | < 16                |             | 5.0                                  |
|                  | 16 / 25             | < 10 µF     | 3.5                                  |
| 1206             | > 25                |             | 2.5                                  |
| 1200             | 35 / 50             | ≥ 2.2 µF    | 10.0                                 |
|                  | < 16                | ≥ 10 µF     | 10.0                                 |
|                  | 16 / 25             | 2 10 μΓ     | 10.0                                 |
|                  | < 16                |             | 5.0                                  |
|                  | 16 / 25             | < 22 µF     | 3.5                                  |
| 1210             | > 25                |             | 2.5                                  |
|                  | < 16                | ≥ 22 µF     | 10.0                                 |
|                  | 16 / 25             | ≥ 22 µΓ     | 10.0                                 |
|                  | < 16                |             | 5.0                                  |
| 1808-2225        | 16 / 25             | All         | 3.5                                  |
|                  | > 25                |             | 2.5                                  |



## Table 1A – Capacitance Range/Selection Waterfall (0402 – 1206 Case Sizes)

|                          |                            | _        | se Si<br>erie  |          |          | C        | )40      | 2C              |          |                 |                 | C               | )60      | 3C       |          |          |          |          |          | C        | 080             | 5C              |          |          |          |          |          |          | C,       | 1200     | 6C       |          |          |                                               |
|--------------------------|----------------------------|----------|----------------|----------|----------|----------|----------|-----------------|----------|-----------------|-----------------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------------|
| Сар                      | Сар                        | Volt     | age C          | ode      | 9        | 8        | 4        | 3               | 5        | 9               | 8               | 4               | 3        | 5        | 1        | 2        | 9        | 8        | 4        | 3        | 6               | 5               | 1        | 2        | Α        | 9        | 8        | 4        | 3        | 6        | 5        | 1        | 2        | Α                                             |
| o up                     | Code                       |          | d Volt         | age      | 6.3      | 10       | 16       | 25              | 50       | 6.3             | 10              | 16              | 25       | 50       | 100      | 200      | 6.3      | 10       | 16       | 25       | 35              | 50              | 100      | 200      | 250      | 6.3      | 10       | 16       | 25       | 35       | 50       | 100      | 200      | 250                                           |
|                          |                            |          | Tolera         | nce      |          | F        | rod      | luct            | Ava      | aila            | bilit           | y aı            | nd (     | Chip     | Th       | ickı     | nes      | s Co     | ode      | s –      | See             | Tal             | ole 2    | 2 fo     | r Ch     | nip 1    | Γhic     | kne      | SS       | Dim      | ens      | ion      | s        |                                               |
| 10 - 20 pF*              | 100 - 200*                 | J        | K              | М        | ВВ       | BB       | ВВ       | ВВ              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       |          | EB       |                                               |
| 22 pF                    | 220                        | J        | K              | M        | BB       | BB       | ВВ       | ВВ              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DM       |          | DM       |          |                 |                 |          | DN       |          | EB       |                                               |
| 24 - 91pF                | 240 - 910*                 | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       |          | EB       |                                               |
| 100 - 150 pF**           | 101 - 151**<br>181 - 821** | J        | K<br>K         | M<br>M   | BB<br>BB | BB<br>BB | BB<br>BB | BB<br>BB        | BB<br>BB | CF<br>CF        | CF<br>CF        | CF              | CF<br>CF | CF<br>CF | CF<br>CF | CF<br>CF | DN<br>DN | DN<br>DN | DN<br>DN | DN<br>DN | DN<br>DN        | DN              | DN       | DN       | DN       | EB<br>EB |                                               |
| 180 - 820 pF**<br>1000pF | 101 - 021                  | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF<br>CF        | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN<br>DN        | DN<br>DN | DN<br>DN | DN       | EB                                            |
| 1200 pF                  | 122                        | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 1500 pF                  | 152                        | j        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 1800 pF                  | 182                        | j        | K              | М        | ВВ       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 2200 pF                  | 222                        | J        | Κ              | M        | ВВ       | ВВ       | ВВ       | ВВ              | ВВ       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | ЕВ       | EB                                            |
| 2700 pF                  | 272                        | J        | K              | M        | ВВ       | ВВ       | BB       | BB              | ВВ       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 3300 pF                  | 332                        | J        | K              | M        | BB       | BB       | BB       | BB              | ВВ       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 3900 pF                  | 392                        | J        | K              | M        | BB       | BB       | ВВ       | ВВ              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 4700 pF                  | 472                        | J        | K              | М        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 5600 pF                  | 562                        | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 6800 pF                  | 682                        | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 8200 pF                  | 822                        | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       | CF       | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 10000 pF<br>12000 pF     | 103<br>123                 | J        | K<br>K         | M<br>M   | BB<br>BB | BB<br>BB | BB<br>BB | BB<br>BB        | BB<br>BB | CF<br>CF        | CF<br>CF        | CF<br>CF        | CF<br>CF | CF<br>CF | CF<br>CF | CF       | DN<br>DN | DN<br>DN | DN<br>DN | DN<br>DN | DN<br>DN        | DN<br>DN        | DN<br>DN | DN<br>DN | DN<br>DN | EB<br>EB                                      |
| 15000 pF                 | 153                        | J        | K              | M        | ВВ       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       |          | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 18000 pF                 | 183                        | J        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       |          | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 22000 pF                 | 223                        | j        | K              | M        | BB       | BB       | BB       | BB              | BB       | CF              | CF              | CF              | CF       | CF       | CF       |          | DN       | DN       | DN       | DN       | DN              | DN              | DN       | DN       | DN       | EB                                            |
| 27000 pF                 | 273                        | Ĵ        | K              | M        | BB       | BB       | BB       | BB              |          | CF              | CF              | CF              | CF       | CF       | CF       |          | DN       | DN       | DN       | DN       | DN              | DN              | DP       | DE       |          | EB                                            |
| 33000 pF                 | 333                        | J        | Κ              | M        | ВВ       | ВВ       | ВВ       | ВВ              |          | CF              | CF              | CF              | CF       | CF       | CF       |          | DN       | DN       | DN       |          | DN              | DN              | DP       | DE       |          | EB                                            |
| 39000 pF                 | 393                        | J        | K              | M        | ВВ       | ВВ       | ВВ       | ВВ              |          | CF              | CF              | CF              | CF       | CF       | CF       |          | DN       | DN       | DN       | DN       | DN              | DN              | DP       | DE       |          | EB       | EB       | EB       | EB       | EB       | EB       | EC       | EB       | EB                                            |
| 47000 pF                 | 473                        | J        | K              | M        | BB       | BB       | BB       | BB              |          | CF              | CF              | CF              | CF       | CJ       | CF       |          | DO       | DO       | DO       | DO       | DO              | DO              | DE       | DG       |          | EB       | EB       | EB       | EB       | EB       | EB       | EC       | ED       | ED                                            |
| 56000 pF                 | 563                        | J        | K              | M        | BB       | BB       | BB       |                 |          | CF              | CF              | CF              | CF       | CF       |          |          | DP       | DP       | DP       | DP       | DP              | DP              | DE       | DG       |          | EB       | ED       | ED                                            |
| 68000 pF                 | 683                        | J        | K              | M        | BB       | BB       | BB       |                 |          | CF              | CF              | CF              | CF       | CF       |          |          | DP       | DP       | DP       | DP       | DP              | DP              | DE       |          |          | EB       | ED       | ED                                            |
| 82000 pF                 | 823                        | J        | K              | М        | BB       | BB       | BB       |                 |          | CF              | CF              | CF              | CF       | CF       |          |          | DP       | DP       | DP       | DP       | DP              | DP              | DE       |          |          | EB       | ED       | ED                                            |
| 0.1 µF                   | 104                        | J        | K              | M        | BB       | BB       | BB       | BB <sup>1</sup> |          | CF              | CF              | CF              | CF       | CF       |          |          | DN       | DN       | DN       | DN       | DN              | DN              | DE       |          |          | EB       | EM       | EM                                            |
| 0.12 µF                  | 124                        | J        | K              | M        |          |          |          |                 |          | CF              | CF              | CF              | CF       | CF       |          |          | DN       | DN       | DN       | DN       | DP              | DP              | DG       |          |          | EC       | EG       |                                               |
| 0.15 µF                  | 154<br>184                 | J        | K<br>K         | M<br>M   |          |          |          |                 |          | CF<br>CF        | CF<br>CF        | CF              | CF<br>CF | CF       |          |          | DN       | DN       | DN<br>DN | DN       | DP<br>DG        | DP              | DG<br>DG |          |          | EC       | EC<br>EC | EC<br>EC | EC<br>EC | EC<br>EC | EC<br>EC | EC<br>EC | EG       |                                               |
| 0.18 µF<br>0.22 µF       | 224                        | J        | K              | M        | -        |          |          |                 |          | CF              | CF              | CF<br>CF        | CF       |          |          |          | DN<br>DN | DN<br>DN | DN       | DN<br>DN | DG              | DG<br>DG        | DG       |          |          | EC<br>EC | EC       | EC       | EC       | EC       | EC       | EC       |          |                                               |
| 0.22 μF<br>0.27 μF       | 274                        | J        | K              | M        |          |          |          |                 |          | CF              | CF              | CF              | CI       |          |          |          | DP       | DP       | DP       | DP       | DP              | DP              | DG       |          |          | EB       | EB       | EB       | EB       | EC       | EC       | EM       |          |                                               |
| 0.27 μF                  | 334                        | J        | K              | M        |          |          |          |                 |          | CF              | CF              | CF              |          |          |          |          | DG       | DG       | DG       | DG       | DP              | DP              |          |          |          | EB       | EB       | EB       | EB       | EC       | EC       | EG       |          |                                               |
| 0.39 µF                  | 394                        | j        | K              | M        | l        |          |          |                 |          | CF              | CF              | CF              |          |          |          |          | DG       | DG       | DG       | DG       | DE              | DE.             |          |          |          | EB       | EB       | EB       | EB       | EC       | EC       | EG       |          |                                               |
| 0.47 µF                  | 474                        | J        | K              | М        | I        |          |          |                 |          | CF              | CF              | CF              | CG1      |          |          |          | DG       | DG       | DG       | DG       | DE              | DE              |          |          |          | EC       | EC       | EC       | EC       | EC       | EC       | EG       |          |                                               |
| 0.56 µF                  | 564                        | J        | Κ              | М        | 1        |          |          |                 |          | l               |                 |                 |          |          |          |          | DP       | DP       | DP       | DG       | DH              | DH              |          |          |          | ED       | ED       | ED       | ED       | EC       | EC       | EM       |          |                                               |
| 0.68 µF                  | 684                        | J        | K              | М        |          |          |          |                 |          | L               |                 |                 |          |          |          |          | DP       | DP       | DP       | DG       | DH              | DH              |          |          |          | EE       | EE       | EE       | EE       | ED       | ED       | EM       |          |                                               |
| 0.82 μF                  | 824                        | J        | K              | M        |          |          |          |                 |          |                 |                 |                 |          |          |          |          | DP       | DP       | DP       | DG       |                 |                 |          |          |          | EF       | EF       | EF       | EF       | ED       | ED       | EH       |          |                                               |
| 1 μF                     | 105                        | J        | K              | М        |          |          |          |                 |          | CG <sup>1</sup> | CG1             | CG <sup>1</sup> | CD1      |          |          |          |          | DP       |          |          | DG <sup>1</sup> | DG <sup>1</sup> |          |          |          | EP       |          | EP       |          | ED       |          | EH       |          |                                               |
| 1.2 µF                   | 125                        | J        | K              | M        |          |          |          |                 |          |                 |                 |                 |          |          |          |          |          | DE       |          |          |                 |                 |          |          |          |          |          |          |          | EH       |          |          |          |                                               |
| 1.5 µF                   | 155                        | J        | K              | M        |          |          |          |                 |          |                 |                 |                 |          |          |          |          |          | DG       |          |          |                 |                 |          |          |          |          |          |          |          | EH       |          |          |          |                                               |
| 1.8 µF<br>2.2 µF         | 185<br>225                 | J        | K<br>K         | M<br>M   |          |          |          |                 |          | CCI             | CG <sup>1</sup> |                 |          |          |          |          |          | DG<br>DG |          |          |                 |                 |          |          |          | EH       |          |          |          | EH       |          |          |          |                                               |
| 2.2 μF<br>2.7 μF         | 225<br>275                 | ا ر<br>ا | K              | M        |          |          |          |                 |          | CG'             | CG'             |                 |          |          |          |          | ال       | טט       | טט       | יטטי     |                 |                 |          |          |          |          |          | EN.      |          | L        | LΠ       |          |          |                                               |
| Σ μι                     | 270                        |          | d Volt         | age      | 6.3      | 5        | 16       | 25              | 20       | 6.3             | 5               | 9               | 25       | 20       | 9        | 200      | 6.3      | 5        | 9        | 25       | 35              | 20              | 9        | 200      | 250      | 6.3      |          | 9        | 25       | 35       | 20       | 100      | 200      | 250                                           |
| Сар                      | Сар                        |          | (VDC)<br>age C |          | 9        | 8        | 4        | 3               | 5        | 9               | 8               | 4               | 3        | 5        | 1        | 2        | 9        | 8        | 4        | 3        | 6               | 5               | 1        | 2        | _        | 9        | _        | 4        | 3        | 6        | 5        | 1        | 2        | A                                             |
| 044                      | Code                       | Cas      | se Si          | ze/      | ŕ        |          | 0402     |                 |          | ŕ               |                 |                 | )603     |          | •        | _        | ŕ        |          | <u>'</u> |          | 080             |                 |          |          |          | ŕ        |          |          |          | 1206     |          | •        | -        | , , <u>, , , , , , , , , , , , , , , , , </u> |
|                          | <u> </u>                   |          | erie           | <u> </u> | <u> </u> |          |          |                 |          |                 |                 |                 |          |          |          |          |          |          |          |          |                 |                 |          |          |          |          |          |          |          |          |          |          |          |                                               |

<sup>\*</sup>Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

<sup>\*\*</sup>Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

xx<sup>1</sup> Available only in K, M tolerance.

xx<sup>2</sup> Available only in M tolerance.



### Table 1A - Capacitance Range/Selection Waterfall (0402 - 1206 Case Sizes) cont'd

|        |             |     | se S<br>erie    | ize/<br>es |     | C  | )402 | 2C  |     |      |       | C    | 060  | 3C   |     |      |     |                 |                 | C   | 080 | 5C  |       |       |      |      |      |     | C1  | 120 | 6C  |     |     |     |
|--------|-------------|-----|-----------------|------------|-----|----|------|-----|-----|------|-------|------|------|------|-----|------|-----|-----------------|-----------------|-----|-----|-----|-------|-------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| Сар    | Сар         | Vol | tage C          | ode        | 9   | 8  | 4    | 3   | 5   | 9    | 8     | 4    | 3    | 5    | 1   | 2    | 9   | 8               | 4               | 3   | 6   | 5   | 1     | 2     | Α    | 9    | 8    | 4   | 3   | 6   | 5   | 1   | 2   | Α   |
| Oup    | Code        |     | ed Vol          |            | 6.3 | 10 | 16   | 25  | 20  | 6.3  | 10    | 16   | 25   | 20   | 100 | 200  | 6.3 | 10              | 16              | 25  | 35  | 20  | 100   | 200   | 250  | 6.3  | 10   | 16  | 25  | 35  | 20  | 100 | 200 | 250 |
|        |             | Сар | Toler           | ance       |     | F  | rod  | uct | Ava | aila | bilit | y aı | nd ( | Chip | Th  | ickı | nes | s Co            | odes            | s – | See | Tak | ole 2 | 2 foi | r Ch | ip 1 | Γhic | kne | ess | Dim | ens | ion | s   |     |
| 3.3 µF | 335         | J   | K               | М          |     |    |      |     |     |      |       |      |      |      |     |      |     |                 |                 |     |     |     |       |       |      | ED   | ED   | ED  | EH  |     |     |     |     |     |
| 3.9 µF | 395         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      |     |                 |                 |     |     |     |       |       |      | EF   | EF   | EF  | EH  |     |     |     |     |     |
| 4.7 µF | 475         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      | DG¹ | DG <sup>1</sup> | DG <sup>1</sup> |     |     |     |       |       |      | ΕH¹  | EH1  | EH1 | EH1 | EH¹ | EH1 |     |     |     |
| 5.6 µF | 565         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      |     |                 |                 |     |     |     |       |       |      | EH   | EH   | EH  |     |     |     |     |     |     |
| 6.8 µF | 685         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      |     |                 |                 |     |     |     |       |       |      | EH   | EH   | EH  |     |     |     |     |     |     |
| 8.2 µF | 825         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      |     |                 |                 |     |     |     |       |       |      | EH   | EH   | EH  |     |     |     |     |     |     |
| 10 μF  | 106         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      | DG¹ | DG <sup>1</sup> |                 |     |     |     |       |       |      | EH   | EH   | EH  | EH1 |     |     |     |     |     |
| 22 µF  | 226         | J   | K               | M          |     |    |      |     |     |      |       |      |      |      |     |      |     |                 |                 |     |     |     |       |       |      | EH¹  | EH1  |     |     |     |     |     |     |     |
|        |             |     | ed Vol<br>(VDC) |            | 6.3 | 2  | 16   | 22  | 20  | 6.3  | 2     | 9    | 25   | 20   | 100 | 200  | 6.3 | 9               | 9               | 22  | 35  | 20  | 100   | 200   | 250  | 6.3  | 9    | 9   | 25  | 35  | 20  | 100 | 200 | 250 |
| Сар    | Cap<br>Code | Vol | tage C          | ode        | 9   | 8  | 4    | 3   | 5   | 9    | 8     | 4    | 3    | 5    | 1   | 2    | 9   | 8               | 4               | 3   | 6   | 5   | 1     | 2     | Α    | 9    | 8    | 4   | 3   | 6   | 5   | 1   | 2   | Α   |
|        | 2340        |     | se S<br>Serie   |            |     | C  | 0402 | 2C  |     |      |       | C    | 060  | 3C   |     |      |     |                 |                 | C   | 080 | 5C  |       |       |      |      |      |     | C.  | 120 | 6C  |     |     |     |

## Table 1B – Capacitance Range/Selection Waterfall (1210 – 2225 Case Sizes)

|             | Com         | _   | se Si<br>Serie   |      |     |    | (   | C12  | 100  | ;    |      |     | C1   | 808  | BC  |      | C1 | 1812 | 2C    |      |      | C18  | 250 |      |      | C2 | 222  | 0C  |      | (   | C22  | 250 | ;   |
|-------------|-------------|-----|------------------|------|-----|----|-----|------|------|------|------|-----|------|------|-----|------|----|------|-------|------|------|------|-----|------|------|----|------|-----|------|-----|------|-----|-----|
| Cap         | Сар         | Vol | tage C           | ode  | 9   | 8  | 4   | 3    | 5    | 1    | 2    | Α   | 5    | 1    | 2   | 3    | 5  | 1    | 2     | Α    | 5    | 1    | 2   | Α    | 3    | 5  | 1    | 2   | Α    | 5   | 1    | 2   | Α   |
| •           | Code        | Rat | ed Volt<br>(VDC) |      | 6.3 | 10 | 16  | 25   | 20   | 100  | 200  | 250 | 20   | 100  | 200 | 25   | 50 | 100  | 200   | 250  | 20   | 100  | 200 | 250  | 25   | 20 | 100  | 200 | 250  | 50  | 100  | 200 | 250 |
|             |             | Cap | Tolera           | ince |     | Pr | odu | ct A | ٩vai | labi | lity | and | d Ch | ip 1 | Γhi | ckne | ss | Cod  | les · | - Se | ee T | able | 2 f | or C | Chip | Th | ickr | ess | ) Di | mer | nsio | ns  |     |
| 10 - 91 pF* | 100 - 910*  | J   | K                | М    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 11 pF       | 110         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 12 pF       | 120         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 13 pF       | 130         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 15 pF       | 150         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 16 pF       | 160         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 18 pF       | 180         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 20 pF       | 200         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 22 pF       | 220         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 24 pF       | 240         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 27 pF       | 270         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 30 pF       | 300         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 33 pF       | 330         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 36 pF       | 360         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      | l   |      |     |     |
| 39 pF       | 390         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      | l    |      |     |      |      |    |      |     |      | İ   |      |     |     |
| 43 pF       | 430         | J   | K                | М    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      |      |      |     |      |      |    |      |     |      |     |      |     |     |
| 47 pF       | 470         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     | 1    |    |      |       |      |      |      |     |      |      |    |      |     |      | 1   |      |     |     |
| 51 pF       | 510         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     | l    |      |     | 1    |    |      |       |      | l    |      |     |      | l    |    |      |     |      | İ   |      |     |     |
| 56 pF       | 560         | J   | K                | M    | FB  | FB | FB  | FB   | FB   | FB   | FB   |     |      |      |     |      |    |      |       |      | l    |      |     |      | l    |    |      |     |      | İ   |      |     |     |
|             |             | Rat | ed Volt<br>(VDC) |      | 6.3 | 19 | 16  | 25   | 20   | 100  | 200  | 250 | 20   | 100  | 200 | 25   | 20 | 100  | 200   | 250  | 20   | 100  | 200 | 250  | 25   | 20 | 100  | 200 | 250  | 50  | 100  | 200 | 250 |
| Сар         | Cap<br>Code | Vol | tage C           | ode  | 9   | 8  | 4   | 3    | 5    | 1    | 2    | Α   | 5    | 1    | 2   | 3    | 5  | 1    | 2     | Α    | 5    | 1    | 2   | Α    | 3    | 5  | 1    | 2   | Α    | 5   | 1    | 2   | Α   |
|             | Jour        |     | se Si<br>Serie   |      |     |    | (   | C12  | 10C  | ;    |      |     | C.   | 1808 | зС  |      | C. | 1812 | 2C    |      |      | C18  | 250 | ;    |      | C  | 2220 | С   |      |     | C22  | 25C | ;   |

<sup>\*</sup>Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

<sup>\*\*</sup>Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

 $xx^1$  Available only in K, M tolerance.

 $xx^2$  Available only in M tolerance.



### Table 1B - Capacitance Range/Selection Waterfall (1210 - 2225 Case Sizes) cont'd

| Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap   Cap    |          | 0    |     | se Si<br>Serie |     |     |     | (   | C12 <sup>-</sup> | 10C | ;    |      |     | C1   | 808  | 3C  |     | C1   | 1812 | 2C    |      | (   | C18  | 250 |      |      | C2 | 222  | 0C  |      | (   | C22 | 250     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----|----------------|-----|-----|-----|-----|------------------|-----|------|------|-----|------|------|-----|-----|------|------|-------|------|-----|------|-----|------|------|----|------|-----|------|-----|-----|---------|-----|
| Rated Vollage   Cap      | Сар      | Cap  | Vol | tage C         | ode | 9   | 8   | 4   | 3                | 5   | 1    | 2    | Α   | 5    | 1    | 2   | 3   | 5    | 1    | 2     | А    | 5   | 1    | 2   | Α    | 3    | 5  | 1    | 2   | Α    | 5   | 1   | 2       | Α   |
| Capp   Cap   |          | Code | Rat |                | age | 6.3 | 10  | 16  | 25               | 20  | 100  | 200  | 250 | 20   | 100  | 200 | 25  | 20   | 100  | 200   | 250  | 20  | 100  | 200 | 250  | 25   | 20 | 100  | 200 | 250  | 20  | 100 | 200     | 250 |
| Respr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      | Сар | Tolera         | nce |     | Pre | odu | ct A             | vai | labi | lity | and | l Ch | ip T | hic | kne | ss ( | Cod  | les - | - Se | e T | able | 2 f | or C | Chip | Th | ickr | nes | s Di | men | sio | ns      |     |
| TSpF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62 pF    | 620  | J   | K              | М   | FB  | _   |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| Regif   Seco   J   K   M   FB   FB   FB   FB   FB   FB   FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 1916 910 J K M FB FB FB FB FB FB FB FB FB FB FB FB FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | ŀ    |    |      |     |      |     |     |         |     |
| 100-270   101-271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | ł    |    |      |     |      |     |     |         |     |
| 1100   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | ł    |    |      |     |      |     |     |         |     |
| 120pF   121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 1310   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | ł    |    |      |     |      |     |     |         |     |
| TSOPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | ł    |    |      |     |      |     |     |         |     |
| 1810   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 220pF 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | 1    |    |      |     |      |     |     |         |     |
| 2210   F   2211   J   K   M   FB   FB   FB   FB   FB   FB   FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      | -   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 330)pF 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·      |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 390 pF 391 J K M FB FB FB FB FB FB FB FB FB FB FB FB FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |     |                |     |     |     |     |                  |     |      |      |     | 1F   | LF   | 1 F |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| A70-1,200 pF**   A71-1,22**   J   K   M   FB   FB   FB   FB   FB   FB   FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·      |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      | i    |    |      |     |      |     |     |         |     |
| Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Second   F   Sec   | •        |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     | GB  | GB   | GB   | GB    |      |     |      |     |      | İ    |    |      |     |      |     |     |         |     |
| 880 pF 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 820 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      | j   |                |     |     |     |     |                  |     |      | FB   |     |      |      |     |     |      | 1    |       |      |     |      |     |      | İ    |    |      |     |      | İ   |     |         |     |
| 1.000 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      | j   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      | 1    |       |      |     |      |     |      | İ    |    |      |     |      | İ   |     |         |     |
| 1,500 pF 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      | J   |                | М   | FB  | FB  | FB  |                  |     |      | FB   |     |      |      | LF  |     |      |      | GB    |      |     |      |     |      | İ    |    |      |     |      | İ   |     |         |     |
| 1,800 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,200 pF | 122  | J   | K              | М   | FB  | FB  | FB  | FB               | FB  | FB   | FB   |     | LF   | LF   | LF  | GB  | GB   | GB   | GB    |      | İ   |      |     |      | İ    |    |      |     |      | İ   |     |         |     |
| 2,200 pF 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,500 pF | 152  | J   | K              | M   | FB  | FB  | FB  | FB               | FB  | FB   | FE   |     | LF   | LF   | LF  | GB  | GB   | GB   | GB    |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 2,700 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,800 pF | 182  | J   | K              | M   | FB  | FB  | FB  | FB               | FB  | FB   | FE   |     | LF   | LF   | LF  | GB  | GB   | GB   | GB    |      |     |      |     |      | İ    |    |      |     |      |     |     |         |     |
| 3,300 pF 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,200 pF | 222  | J   | K              | M   | FB  | FB  | FB  | FB               | FB  | FB   | FB   | FB  | LF   | LF   | LF  | GB  | GB   | GB   | GB    |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 3,900 pF 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,700 pF | 272  | J   | K              | M   | FB  | FB  | FB  | FB               | FB  | FB   | FB   | FB  | LF   | LF   | LF  | GB  | GB   | GB   | GB    |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 4,700 pF   562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,300 pF | 332  | J   | K              | М   | FB  | FB  | FB  | FB               | FB  | FB   | FB   | FB  | LF   | LF   |     | GB  | GB   | GB   | GB    |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 5,600 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,900 pF | 392  | J   | K              | M   | FB  | FB  | FB  | FB               | FB  | FB   | FB   | FB  | LF   | LF   |     | GB  | GB   | GB   | GB    |      | НВ  | HB   | НВ  |      |      |    |      |     |      |     |     |         |     |
| 6,800 pF  682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,700 pF | 472  | J   | K              | M   | FB  | FB  | FB  | FB               | FB  | FB   |      | FB  | LD   |      | LD  | GB  | GB   | GB   | GD    |      | НВ  | НВ   | НВ  |      |      |    |      |     |      | KE  | KE  | KE      |     |
| 8,200 pF 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,600 pF | 562  | J   |                | M   | FB  | FB  |     |                  |     |      |      |     | LD   |      |     |     |      | 1    |       |      | НВ  |      | НВ  |      |      |    |      |     |      |     | KE  | KE      |     |
| 10,000 pF 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      | J   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      | 1    |       |      |     |      |     |      |      |    |      |     |      |     | KE  | KE      |     |
| 12,000 pF 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      | -   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      | _   |      |      |    |      |     |      |     | KE  | KE      |     |
| 15,000 pF 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      | J   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     | KE  | KE      |     |
| 18,000 pF 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      | HE  |      |      |    |      |     |      |     | KE  | KE      |     |
| 22,000 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     | KE  | KE      |     |
| 27,000 pF 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      | LD  |     |      |      |       |      |     |      | LUD | LID  |      |    |      |     |      |     | KE  |         |     |
| 33,000 pF 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     | KE  |         |     |
| 39,000 pF 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      | 1    |       |      |     |      |     |      |      |    |      |     |      |     | KE  |         |     |
| 47,000 pF 56,000 pF 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | -   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      | 1    |       |      |     |      |     |      |      |    |      |     |      | ΚĖ  |     |         |     |
| 56,000 pF 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      | J   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      | 1    |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 68,000 pF 82,000 pF 823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | J   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 82,000 pF 0.10 μF 104 J K M FB FB FB FB FB FB FB FB FB FB FB FB FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      | J   |                |     |     | _   |     |                  |     |      |      |     |      | LU   |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     |     |         |     |
| 0.10 μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |     |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      | IC  | IC   |     |     |         |     |
| 0.12 μF 124 J K M FB FB FB FB FB FD FH FH LD GB GB GB GB HB HB HB HB JC JC JC JC JC KC K R  Rated Voltage (VDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      | ı   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      |     |      | KC  | KC  | KC      | KC  |
| Cap   Rated Voltage (VDC)   9 9 9 52 00 00 00 52 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | J   |                |     |     |     |     |                  |     |      |      |     |      |      |     |     |      |      |       |      |     |      |     |      |      |    |      | JC  | JC   |     |     | KC      |     |
| Cap   Cap   Values Cada   0 0 4 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      | Rat |                | age |     |     |     |                  |     |      |      |     |      | 100  | 200 |     |      |      |       |      |     |      |     |      |      |    |      |     |      |     | 9   | 200     | 250 |
| Code   12/11/2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2 | Can      |      | Vol | • ,            |     | 9   | 8   | 4   | 3                | 5   | 1    | 2    | Δ   | 5    | 1    | 2   | 3   | 5    | 1    | 2     | Α    | 5   | 1    | 2   | Α    | 3    | 5  | 1    | 2   | Δ    | 5   | 1   | 2       | Α   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Code | Ca  | se Si          | ze/ | Ĺ   |     |     |                  |     |      | _    |     |      |      |     |     |      |      |       |      |     |      |     |      | Ť    |    |      |     | .,   |     |     | <br>25C |     |

<sup>\*</sup>Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

<sup>\*\*</sup>Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

*xx*<sup>1</sup> Available only in K, M tolerance.

xx<sup>2</sup> Available only in M tolerance.



### Table 1B - Capacitance Range/Selection Waterfall (1210 - 2225 Case Sizes) cont'd

|         | Con         |     | se S<br>Serie  |      |                 |                 | (               | C12             | 100  | ;    |      |     | C1   | 808  | ВС   |     | C1 | 1812 | 2C    |      | (   | C18  | 250 | ;    |      | C2  | 222  | 0C  |      |     | C22 | 250 | ;   |
|---------|-------------|-----|----------------|------|-----------------|-----------------|-----------------|-----------------|------|------|------|-----|------|------|------|-----|----|------|-------|------|-----|------|-----|------|------|-----|------|-----|------|-----|-----|-----|-----|
| Cap     | Сар         | Vol | tage C         | ode  | 9               | 8               | 4               | 3               | 5    | 1    | 2    | Α   | 5    | 1    | 2    | 3   | 5  | 1    | 2     | Α    | 5   | 1    | 2   | Α    | 3    | 5   | 1    | 2   | Α    | 5   | 1   | 2   | A   |
|         | Code        | Rat | ed Vol         |      | 6.3             | 19              | 16              | 25              | 20   | 100  | 200  | 250 | 20   | 100  | 200  | 25  | 20 | 100  | 200   | 250  | 20  | 100  | 200 | 250  | 25   | 20  | 100  | 200 | 250  | 20  | 100 | 200 | 250 |
|         |             | Cap | Tolera         | ance |                 |                 |                 | ct A            | lvai | labi | lity | and | d Ch | ip 1 | Γhic | kne | ss | Cod  | les - | - Se | e T | able | 2 f | or C | Chip | Thi | ickr | ess | s Di | mer | sio |     |     |
| 0.15 µF | 154         | J   | K              | M    | FC              | FC              |                 | FC              | FC   | FD   | FM   | FM  | LD   |      |      | GB  | GB |      | GE    | GE   | НВ  | НВ   | НВ  | НВ   | JC   | JC  | JC   | JC  | JC   | KC  | KC  | KC  | KC  |
| 0.18 µF | 184         | J   | K              | M    | FC              | FC              | FC              | FC              | FC   | FD   | FK   | FK  | LD   |      |      | GB  | GB | GB   | GG    | GG   |     | НВ   | НВ  | НВ   | JC   | JC  | JC   | JC  | JC   | KC  | KC  | KC  | KC  |
| 0.22 µF | 224         | J   | K              | M    | FC              | FC              | FC              | FC              | FC   | FD   | FK   | FK  |      |      |      | GB  | GB | GB   | GG    | GG   | НВ  | НВ   | НВ  | НВ   | JC   | JC  | JC   | JC  | JC   | KC  | KC  | KC  | KC  |
| 0.27 µF | 274         | J   | K              | M    | FC              | FC              | FC              | FC              | FC   | FD   |      |     |      |      |      | GB  | GB | GG   | GG    | GG   | НВ  | НВ   | НВ  | НВ   | JC   | JC  | JC   | JC  | JC   | KB  | KC  | KC  | KC  |
| 0.33 µF | 334         | J   | K              | M    | FD              | FD              | FD              | FD              | FD   | FD   |      |     |      |      |      | GB  | GB | GG   | GG    | GG   | НВ  | НВ   | НВ  | НВ   | JC   | JC  | JC   | JC  | JC   | KB  | KC  | KC  | KC  |
| 0.39 µF | 394         | J   | K              | M    | FD              | FD              | FD              | FD              | FD   | FD   |      |     |      |      |      | GB  | GB | GG   | GG    | GG   | НВ  | НВ   | HD  | HD   | JC   | JC  | JC   | JC  | JC   | KB  | KC  | KC  | KC  |
| 0.47 µF | 474         | J   | K              | M    | FD              | FD              | FD              | FD              | FD   | FD   |      |     |      |      |      | GB  | GB | GG   | GJ    | GJ   | НВ  | НВ   | HD  | HD   | JC   | JC  | JC   | JC  | JC   | KB  | KC  | KD  | KD  |
| 0.56 μF | 564         | J   | K              | M    | FD              | FD              | FD              | FD              | FD   | FF   |      |     |      |      |      | GC  | GC | GG   |       |      | НВ  | HD   | HD  | HD   | JC   | JC  | JC   | JD  | JD   | KB  | KC  | KD  | KD  |
| 0.68 µF | 684         | J   | K              | M    | FD              | FD              | FD              | FD              | FD   | FG   |      |     |      |      |      | GC  | GC | GG   |       |      | НВ  | HD   | HD  | HD   | JC   | JC  | JD   | JD  | JD   | KB  | KC  | KD  | KD  |
| 0.82 µF | 824         | J   | K              | M    | FF              | FF              | FF              | FF              | FF   | FL   |      |     |      |      |      | GE  | GE | GG   |       |      | НВ  | HF   | HF  | HF   | JC   | JC  | JF   | JF  | JF   | KB  | KC  | KE  | KE  |
| 1.0 µF  | 105         | J   | K              | M    | FH              | FH              | FH              | FH              | FH   | FM   |      |     |      |      |      | GE  | GE | GG   |       |      | НВ  | HF   | HF  | HF   | JC   | JC  | JF   | JF  | JF   | KB  | KD  | KE  | KE  |
| 1.2 µF  | 125         | J   | K              | M    | FH              | FH              | FH              | FH              | FG   | FH   |      |     |      |      |      | GB  | GB | GB   |       |      | НВ  |      |     |      | JC   | JC  |      |     |      | KB  | KE  | KE  | KE  |
| 1.5 µF  | 155         | J   | K              | M    | FH              | FH              | FH              | FH              | FG   | FM   |      |     |      |      |      | GC  | GC | GC   |       |      | HC  |      |     |      | JC   | JC  |      |     |      | KC  |     |     |     |
| 1.8 µF  | 185         | J   | K              | M    | FH              | FH              | FH              | FH              | FG   | FJ   |      |     |      |      |      | GE  | GE | GE   |       |      | HD  |      |     |      | JD   | JD  |      |     |      | KD  |     |     |     |
| 2.2 µF  | 225         | J   | K              | M    | FJ              | FJ              | FJ              | FJ              | FG   | FT¹  |      |     |      |      |      | GO  | GO | GO1  |       |      | HF  |      |     |      | JF   | JF  |      |     |      | KD  |     |     |     |
| 2.7 µF  | 275         | J   | K              | M    | FE              | FE              | FE              | FG              | FH   |      |      |     |      |      |      | GJ  | GJ | GJ   |       |      |     |      |     |      |      |     |      |     |      | 1   |     |     |     |
| 3.3 µF  | 335         | J   | K              | M    | FF              | FF              | FF              | FM              | FM   |      |      |     |      |      |      | GL  | GL | GL   |       |      |     |      |     |      |      |     |      |     |      |     |     |     |     |
| 3.9 µF  | 395         | J   | K              | M    | FG              | FG              | FG              | FG              | FK   |      |      |     |      |      |      | İ   |    |      |       |      |     |      |     |      |      |     |      |     |      |     |     |     |     |
| 4.7 µF  | 475         | J   | K              | M    | FC              | FC              | FC              | FG              | FS   |      |      |     |      |      |      | GK  | GK |      |       |      |     |      |     |      | JF   | JF  |      |     |      |     |     |     |     |
| 5.6 µF  | 565         | J   | K              | M    | FF              | FF              | FF              | FH              |      |      |      |     |      |      |      | İ   |    |      |       |      |     |      |     |      |      |     |      |     |      |     |     |     |     |
| 6.8 µF  | 685         | J   | K              | M    | FG              | FG              | FG              | FM              |      |      |      |     |      |      |      | İ   |    |      |       |      |     |      |     |      |      |     |      |     |      |     |     |     |     |
| 8.2 µF  | 825         | J   | K              | M    | FH              | FH              | FH              | FK              |      |      |      |     |      |      |      |     |    |      |       |      |     |      |     |      |      |     |      |     |      |     |     |     |     |
| 10 µF   | 106         | J   | K              | M    | FT1             | FT1             | FT1             | FS1             | FS1  |      |      |     | l    |      |      | GK  |    |      |       |      |     |      |     |      | JF   | JO  |      |     |      | l   |     |     |     |
| 12 µF   | 126         | J   | K              | M    | İ               |                 |                 |                 |      |      |      |     | İ    |      |      | İ   |    |      |       |      | İ   |      |     |      | İ    |     |      |     |      | İ   |     |     |     |
| 15 µF   | 156         | J   | K              | M    | FM              | FM              |                 |                 |      |      |      |     | İ    |      |      | İ   |    |      |       |      | İ   |      |     |      | JO   | JO  |      |     |      | İ   |     |     |     |
| 18 µF   | 186         | J   | K              | M    | İ               |                 |                 |                 |      |      |      |     | İ    |      |      | İ   |    |      |       |      | İ   |      |     |      | İ    |     |      |     |      | İ   |     |     |     |
| 22 µF   | 226         | J   | K              | M    | FS              | FS              | FS <sup>1</sup> | FS <sup>1</sup> |      |      |      |     |      |      |      | l   |    |      |       |      |     |      |     |      | JO   |     |      |     |      |     |     |     |     |
| 47 μF   | 476         | J   | K              | M    | FS <sup>1</sup> | FS <sup>2</sup> |                 |                 |      |      |      |     |      |      |      | İ   |    |      |       |      |     |      |     |      |      |     |      |     |      |     |     |     |     |
|         | _           | Rat | ed Vol         |      | 6.3             | 9               | 16              | 25              | 20   | 100  | 200  | 250 | 20   | 100  | 200  | 25  | 20 | 100  | 200   | 250  | 20  | 100  | 200 | 250  | 25   | 20  | 100  | 200 | 250  | 20  | 100 | 200 | 250 |
| Сар     | Cap<br>Code | Vol | tage C         | ode  | 9               | 8               | 4               | 3               | 5    | 1    | 2    | Α   | 5    | 1    | 2    | 3   | 5  | 1    | 2     | Α    | 5   | 1    | 2   | Α    | 3    | 5   | 1    | 2   | Α    | 5   | 1   | 2   | Α   |
|         | Coue        |     | se Si<br>Serie |      |                 |                 |                 | C12             | 10C  | ;    |      |     | C1   | 808  | ВС   |     | C. | 1812 | 2C    |      | ,   | C18  | 25C | ;    |      | C2  | 2220 | С   |      | (   | C22 | 25C | ;   |

<sup>\*</sup>Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

<sup>\*\*</sup>Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

*xx*<sup>1</sup> Available only in K, M tolerance.

xx<sup>2</sup> Available only in M tolerance.



## Table 2A - Chip Thickness/Tape & Reel Packaging Quantities

| Code   Size¹   Range (mm)   7" Reel   13" Reel   7" Reel   13" Reel   Range (mm)   7" Reel   13" Reel   7" Reel   13" Reel   Range (mm)   7" Reel   13" Reel   7" Reel   13" Reel   Range (mm)   7" Reel   13" Reel   7" Reel   13" Reel   Range (mm)   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   Range (mm)   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel   7" Reel   13" Reel    | Thickness | Case              | Thickness ±                       | Paper Q | uantity <sup>1</sup> | Plastic ( | Quantity |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------------------------------|---------|----------------------|-----------|----------|
| CFF 0603 0.80 ± 0.07* 4,000 15,000 0 0 0 0 CD 0603 0.80 ± 0.10* 4,000 15,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Code      | Size <sup>1</sup> | Range (mm)                        | 7" Reel | 13" Reel             | 7" Reel   | 13" Reel |
| CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   |         |                      |           |          |
| CDD 6603 0.80 ± 0.15* 4,000 15,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                   |                                   |         |                      |           |          |
| CJ 6603 0.80 ± 0.15; 4,000 15,000 0 0 0 0 DM 0805 0.70 ± 0.20; 4,000 15,000 0 0 0 0 DM 0805 0.80 ± 0.10; 4,000 15,000 0 0 0 0 DD 0805 0.90 ± 0.10; 4,000 15,000 0 0 0 0 DP 0805 0.90 ± 0.10; 4,000 15,000 0 0 0 0 DE 0805 1.00 ± 0.10; 0 0 0 0 0 2,500 10,000 DE 0805 1.00 ± 0.10; 0 0 0 0 2,500 10,000 DG 0805 1.25 ± 0.15 0 0 0 2,500 10,000 DG DG 0805 1.25 ± 0.20 0 0 0 2,500 10,000 ED 0.805 1.25 ± 0.20 0 0 0 2,500 10,000 ED 0.805 1.25 ± 0.20 0 0 0 2,500 10,000 ED 0.805 1.25 ± 0.20 0 0 0 0,000 4,000 10,000 ED 0.805 1.25 ± 0.20 0 0 0 0,000 4,000 10,000 ED 0.805 1.25 ± 0.20 0 0 0 0 0,000 4,000 10,000 ED 0.805 1.00 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0,000 10,000 ED 0.805 1.00 0 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.25 ± 0.15 0 0 0 0 0,000 10,000 ED 0.805 1.10 ± 0.10 0 0 0 0 0,000 10,000 ED 0.805 1.10 ± 0.10 0 0 0 0 0,000 10,000 ED 0.805 1.10 0.10 0 0 0 0 0,000 10,000 ED 0.805 1.10 0.10 0 0 0 0 0,000 10,000 ED 0.805 1.10 0.10 0 0 0 0 0,000 10,000 10,000 ED 0.805 1.10 0.10 0 0 0 0 0,000 10,000 10,000 ED 0.805 1.10 0.10 0 0 0 0 0,000 10,000 10,000 ED 0.10 0.10 0.10 0 0 0 0 0,000 10,000 10,000 ED 0.10 0.10 0.10 0 0 0 0 0,000 10,000 10,000 ED 0.10 0.10 0.10 0 0 0 0 0,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,0 |           |                   |                                   |         |                      |           |          |
| DM         0805         0.70 ± 0.20°         4,000         15,000         0         0           DN         0805         0.78 ± 0.10°         4,000         15,000         0         0         0           DP         0805         0.90 ± 0.10°         4,000         15,000         0         0         0           DE         0805         1.00 ± 0.10°         4,000         15,000         0         0         0           DH         0805         1.25 ± 0.15         0         0         2,500         10,000           DH         0805         1.25 ± 0.20         0         0         2,500         10,000           EB         1206         0.78 ± 0.10         4,000         10,000         4,000         10,000           EC         1206         0.95 ± 0.10         0         0         4,000         10,000           EN         1206         0.95 ± 0.10         0         0         2,500         10,000           EE         1206         1.00 ± 0.10         0         0         2,500         10,000           EF         1206         1.20 ± 0.15         0         0         2,500         10,000           EF         1206 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   |                                   |         |                      |           |          |
| DN         0805         0.78 ± 0.10*         4,000         15,000         0         0           DD         0.805         0.80 ± 0.10*         4,000         15,000         0         0           DE         0805         0.90 ± 0.10*         4,000         15,000         0         0           DB         0805         1.25 ± 0.15         0         0         2,550         10,000           DH         0805         1.25 ± 0.20         0         0         2,550         10,000           DH         0805         1.25 ± 0.20         0         0         2,550         10,000           EB         1206         0.99 ± 0.10         0         0         4,000         10,000           EC         1206         0.99 ± 0.10         0         0         4,000         10,000           ED         1206         1.00 ± 0.10         0         0         2,500         10,000           EE         1206         1.00 ± 0.10         0         0         2,500         10,000           EF         1206         1.20 ± 0.20         0         0         2,500         10,000           EF         1206         1.25 ± 0.15         0         0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                   |                                   |         |                      |           |          |
| DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   |         |                      |           |          |
| DP         0805         0.99 ± 0.10*         4,000         15,000         0         0           DB         0805         1.00 ± 0.10*         0         0         2,500         10,000           DH         0805         1.25 ± 0.20         0         0         2,500         10,000           EB         1206         0.78 ± 0.10         4,000         10,000         4,000         10,000           EC         1206         0.99 ± 0.10         0         0         4,000         10,000           EN         1206         0.99 ± 0.10         0         0         4,000         10,000           ED         1206         1.00 ± 0.10         0         0         4,000         10,000           ED         1206         1.00 ± 0.10         0         0         2,500         10,000           EF         1206         1.20 ± 0.15         0         0         2,500         10,000           EF         1206         1.25 ± 0.15         0         0         2,500         10,000           EM         1206         1.60 ± 0.15         0         0         2,500         10,000           EH         1206         1.60 ± 0.15         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |                                   |         |                      |           |          |
| DE         0805         1.00 ± 0.10         0         0         2.500         10,000           DG         0805         1.25 ± 0.15         0         0         2,500         10,000           EB         1206         0.78 ± 0.10         0         0         2,500         10,000           EC         1206         0.90 ± 0.10         0         0         4,000         10,000           EN         1206         0.95 ± 0.10         0         0         0         4,000         10,000           ED         1206         1.00 ± 0.10         0         0         2,500         10,000           EF         1206         1.20 ± 0.15         0         0         2,500         10,000           EF         1206         1.20 ± 0.20         0         0         2,500         10,000           EM         1206         1.60 ± 0.15         0         0         2,500         10,000           EG         1206         1.60 ± 0.15         0         0         2,500         10,000           EH         1206         1.60 ± 0.20         0         0         2,000         8,000           FB         1210         0.78 ± 0.10         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                   |                                   |         |                      |           |          |
| DG         0805         1.25 ± 0.15         0         0         2.500         10,000           EB         1206         0.78 ± 0.10         4,000         10,000         4,000         10,000           EC         1206         0.90 ± 0.10         0         0         4,000         10,000           EN         1206         0.95 ± 0.10         0         0         4,000         10,000           ED         1206         1.00 ± 0.10         0         0         4,000         10,000           EE         1206         1.20 ± 0.15         0         0         2,500         10,000           EF         1206         1.20 ± 0.20         0         0         2,500         10,000           EF         1206         1.20 ± 0.15         0         0         2,500         10,000           EM         1206         1.60 ± 0.20         0         0         2,500         10,000           EG         1206         1.60 ± 0.20         0         0         2,500         10,000           FB         1210         0.78 ± 0.10         0         0         2,000         8,000           FB         1210         0.79 ± 0.10         0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                   |                                   |         |                      |           |          |
| EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   | 0       | 0                    |           |          |
| EC 1206 0.90 ± 0.10 0 0 4,000 10,000 ED 1206 0.95 ± 0.10 0 0 0 4,000 10,000 ED 1206 1.00 ± 0.10 0 0 2,500 10,000 EE 1206 1.20 ± 0.15 0 0 2,500 10,000 EF 1206 1.20 ± 0.15 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 2,000 8,000 EH 1206 1.60 ± 0.12 0 0 0 2,500 10,000 EM 1206 1.60 ± 0.12 0 0 0 2,500 10,000 EM 1206 1.60 ± 0.12 0 0 0 2,000 8,000 EM 1206 1.60 ± 0.12 0 0 0 0 2,000 8,000 EM 1210 0.98 ± 0.10 0 0 0 4,000 10,000 EM 1210 0.95 ± 0.10 0 0 0 4,000 10,000 EM 1210 0.95 ± 0.10 0 0 0 4,000 10,000 EM 1210 0.95 ± 0.10 0 0 0 4,000 10,000 EM 1210 0.95 ± 0.10 0 0 0 2,500 10,000 EM 1210 0.95 ± 0.10 0 0 0 2,500 10,000 EM 1210 0.95 ± 0.10 0 0 0 2,500 10,000 EM 1210 1.05 ± 0.15 0 0 2,500 10,000 EM 1210 1.25 ± 0.15 0 0 2,500 10,000 EM 1210 1.55 ± 0.15 0 0 2,500 10,000 EM 1210 1.55 ± 0.15 0 0 2,500 10,000 EM 1210 1.55 ± 0.15 0 0 2,000 8,000 EM 1210 1.55 ± 0.15 0 0 2,000 8,000 EM 1210 1.55 ± 0.15 0 0 2,000 8,000 EM 1210 1.70 ± 0.20 0 0 2,000 8,000 EM 1210 1.90 ± 0.20 0 0 2,000 8,000 EM 1210 1.90 ± 0.20 0 0 2,000 8,000 EM 1210 1.90 ± 0.20 0 0 2,000 8,000 EM 1210 1.90 ± 0.20 0 0 2,000 8,000 EM 1210 1.90 ± 0.20 0 0 2,000 8,000 EM 1210 1.90 ± 0.15 0 0 0 2,500 10,000 EM 1210 1.90 ± 0.15 0 0 0 2,500 10,000 EM 1210 1.90 ± 0.15 0 0 0 2,500 10,000 EM 1210 1.90 ± 0.15 0 0 0 2,500 10,000 EM 1210 1.90 ± 0.15 0 0 0 2,500 10,000 EM 1210 1.90 ± 0.15 0 0 0 2,500 10,000 EM 1212 1.10 ± 0.10 0 0 0 0 0 0 0 0 0 0 0 0,000 EM 1212 1.10 ± 0.10 0 0 0 0 0 0 0 0 0 0 0 0,000 EM 1212 1.10 ± 0.15 0 0 0 0 0 0 0 0 0 0 0 0,000 EM 1212 1.10 ± 0.15 0 0 0 0 0 0 0 0 0 0 0,000 EM 1212 1.10 ± 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0,000 EM 1212 1.10 ± 0.15 0 0 0 0 0 0 0 0 0 0 0 0,000 EM 1212 1.10 ± 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                         |           | 0805              | 1.25 ± 0.20                       |         |                      | 2,500     | 10,000   |
| EN 1206 0.95 ± 0.10 0 0 4,000 10,000 ED 1206 1.00 ± 0.10 0 0 0 2,500 10,000 EE 1206 1.10 ± 0.10 0 0 0 2,500 10,000 EF 1206 1.20 ± 0.15 0 0 0 2,500 10,000 EF 1206 1.20 ± 0.20 0 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 0 2,500 10,000 EG 1206 1.60 ± 0.15 0 0 0 2,500 10,000 EG 1206 1.60 ± 0.20 0 0 0 2,000 8,000 EH 1206 1.60 ± 0.20 0 0 0 2,000 8,000 EH 1206 1.00 ± 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                   |                                   | 4,000   | 10,000               |           |          |
| ED 1206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   | $0.90 \pm 0.10$                   |         |                      |           |          |
| EE 1206 1.10 ± 0.10 0 0 2,500 10,000 EF 1206 1.20 ± 0.15 0 0 0 2,500 10,000 EP 1206 1.20 ± 0.15 0 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 0 2,500 10,000 EM 1206 1.60 ± 0.15 0 0 2,500 10,000 EM 1206 1.60 ± 0.15 0 0 2,000 8,000 EH 1206 1.60 ± 0.15 0 0 2,000 8,000 EH 1206 1.60 ± 0.10 0 0 0 4,000 10,000 FB 1210 0.78 ± 0.10 0 0 0 4,000 10,000 FC 1210 0.90 ± 0.10 0 0 0 4,000 10,000 FC 1210 0.90 ± 0.10 0 0 0 4,000 10,000 FF 1210 1.00 ± 0.10 0 0 0 2,500 10,000 FF 1210 1.10 ± 0.10 0 0 0 2,500 10,000 FF 1210 1.10 ± 0.10 0 0 0 2,500 10,000 FF 1210 1.25 ± 0.15 0 0 2,500 10,000 FF 1210 1.40 ± 0.15 0 0 2,500 10,000 FF 1210 1.55 ± 0.15 0 0 2,000 8,000 FF 1210 1.55 ± 0.15 0 0 2,000 8,000 FF 1210 1.70 ± 0.20 0 0 2,000 8,000 FF 1210 1.85 ± 0.20 0 0 0,000 8,000 FF 1210 1.85 ± 0.20 0 0 0,000 8,000 FF 1210 1.85 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 8,000 FF 1210 1.90 ± 0.20 0 0 0,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8, |           |                   |                                   |         |                      |           |          |
| EF 1206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   |                                   |         |                      |           |          |
| EP 1206 1.20 ± 0.20 0 0 2,500 10,000 EM 1206 1.25 ± 0.15 0 0 0 2,500 10,000 EG 1206 1.60 ± 0.15 0 0 0 2,000 8,000 EH 1206 1.60 ± 0.20 0 0 0 2,000 8,000 FB 1210 0.78 ± 0.10 0 0 4,000 10,000 FC 1210 0.95 ± 0.10 0 0 4,000 10,000 FC 1210 0.95 ± 0.10 0 0 4,000 10,000 FC 1210 0.95 ± 0.10 0 0 0 4,000 10,000 FE 1210 1.00 ± 0.10 0 0 0 2,500 10,000 FF 1210 1.00 ± 0.10 0 0 0 2,500 10,000 FF 1210 1.25 ± 0.15 0 0 2,500 10,000 FF 1210 1.25 ± 0.15 0 0 2,500 10,000 FF 1210 1.55 ± 0.15 0 0 2,000 8,000 FF 1210 1.55 ± 0.15 0 0 2,000 8,000 FF 1210 1.55 ± 0.15 0 0 2,000 8,000 FF 1210 1.85 ± 0.20 0 0 2,000 8,000 FF 1210 1.85 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FF 1210 1.90 ± 0.15 0 0 0 1,000 4,000 10,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,000 FF 1210 1.00 ± 0.15 0 0 0 1,000 4,0 |           |                   |                                   |         |                      |           |          |
| EM 1206 1.25 ± 0.15 0 0 2,500 10,000  EG 1206 1.60 ± 0.15 0 0 2,000 8,000  FH 1210 1.60 ± 0.10 0 0 4,000 10,000  FC 1210 0.90 ± 0.10 0 0 4,000 10,000  FD 1210 1.00 ± 0.10 0 0 0 4,000 10,000  FF 1210 1.00 ± 0.10 0 0 0 2,500 10,000  FF 1210 1.10 ± 0.10 0 0 0 2,500 10,000  FF 1210 1.25 ± 0.15 0 0 2,000 8,000  FH 1210 1.55 ± 0.15 0 0 2,000 8,000  FH 1210 1.55 ± 0.15 0 0 2,000 8,000  FM 1210 1.70 ± 0.20 0 0 2,000 8,000  FT 1210 1.90 ± 0.20 0 0 2,000 8,000  FK 1210 1.90 ± 0.20 0 0 2,000 8,000  FK 1210 2.10 ± 0.20 0 0 2,000 8,000  FK 1210 2.00 ± 0.30 0 0 1,000 4,000  FS 1210 2.50 ± 0.30 0 0 1,000 4,000  FS 1210 2.50 ± 0.30 0 0 1,000 4,000  FS 1812 1.00 ± 0.10 0 0 0 2,500 10,000  GG 1812 1.10 ± 0.10 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.90 ± 0.20 0 0 0 1,000 4,000  GG 1812 1.90 ± 0.20 0 0 0 1,000 4,000  GG 1812 1.90 ± 0.20 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.50 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.90 ± 0.20 0 0 0 5500 2,000  GG 1812 1.90 ± 0.20 0 0 0 5500 2,000  HC 1825 1.15 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.90 ± 0.20 0 0 0 5500 2,000  HC 1825 1.15 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.90 ± 0.20 0 0 0 5500 2,000  HC 1825 1.15 ± 0.15 0 0 0 1,000 4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   |         |                      |           |          |
| EH 1206 1.60 ± 0.20 0 0 2,000 8,000 FB 1210 0.78 ± 0.10 0 0 4,000 10,000 FC 1210 0.90 ± 0.10 0 0 4,000 10,000 FC 1210 0.95 ± 0.10 0 0 4,000 10,000 FE 1210 1.00 ± 0.10 0 0 2,500 10,000 FF 1210 1.10 ± 0.10 0 0 2,500 10,000 FG 1210 1.25 ± 0.15 0 0 2,500 10,000 FH 1210 1.55 ± 0.15 0 0 2,000 8,000 FH 1210 1.55 ± 0.15 0 0 2,000 8,000 FM 1210 1.85 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FS 1210 2.50 ± 0.30 0 0 1,000 8,000 FS 1210 2.50 ± 0.30 0 0 1,000 8,000 FS 1210 2.50 ± 0.30 0 0 1,000 10,000 LD 1808 0.90 ± 0.10 0 0 2,500 10,000 LD 1808 0.90 ± 0.10 0 0 2,500 10,000 LD 1808 0.90 ± 0.10 0 0 2,500 10,000 LF 1808 0.90 ± 0.10 0 0 2,500 10,000 LF 1808 0.90 ± 0.10 0 0 0 2,500 10,000 GG 1812 1.00 ± 0.15 0 0 1,000 4,000 GG 1812 1.00 ± 0.15 0 0 1,000 4,000 GG 1812 1.25 ± 0.15 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 0 0 1,000 4,000 GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 0 0 0 1,000 4,000 GG 1812 1.50 ± 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                   |                                   |         |                      |           |          |
| FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   |         |                      |           |          |
| FC 1210 0.90 ± 0.10 0 0 4,000 10,000 FD 1210 0.95 ± 0.10 0 0 4,000 10,000 FE 1210 1.00 ± 0.10 0 0 0 2,500 10,000 FF 1210 1.10 ± 0.10 0 0 0 2,500 10,000 FG 1210 1.25 ± 0.15 0 0 2,500 10,000 FL 1210 1.55 ± 0.15 0 0 2,000 8,000 FH 1210 1.55 ± 0.15 0 0 2,000 8,000 FM 1210 1.55 ± 0.15 0 0 2,000 8,000 FM 1210 1.70 ± 0.20 0 0 2,000 8,000 FT 1210 1.85 ± 0.20 0 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 0 2,000 8,000 FS 1210 2.50 ± 0.30 0 0 1,000 4,000 FS 1210 2.50 ± 0.30 0 0 1,000 4,000 NA 1706 1.00 ± 0.15 0 0 0 4,000 10,000 NC 1706 1.00 ± 0.15 0 0 0 4,000 10,000 LD 1808 0.90 ± 0.10 0 0 2,500 10,000 GC 1812 1.00 ± 0.15 0 0 0 2,500 10,000 GC 1812 1.00 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.00 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.30 ± 0.10 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 HC 1825 1.15 ± 0.15 0 0 0 1,000 4,000 4,000 HC 1825 1.15 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55 ± 0.15 0 0 0 1,000 4,000 4,000 GC 1812 1.55  |           |                   |                                   |         |                      |           |          |
| FD 1210 0.95 ± 0.10 0 0 4,000 10,000  FE 1210 1.00 ± 0.10 0 0 2,500 10,000  FF 1210 1.10 ± 0.15 0 0 2,500 10,000  FG 1210 1.25 ± 0.15 0 0 2,000 8,000  FH 1210 1.55 ± 0.15 0 0 2,000 8,000  FM 1210 1.70 ± 0.20 0 0 2,000 8,000  FJ 1210 1.85 ± 0.20 0 0 2,000 8,000  FT 1210 1.90 ± 0.20 0 0 2,000 8,000  FK 1210 2.10 ± 0.20 0 0 2,000 8,000  FK 1210 2.10 ± 0.20 0 0 2,000 8,000  FK 1210 2.50 ± 0.30 0 0 2,000 8,000  FS 1210 2.50 ± 0.30 0 0 1,000 4,000  NA 1706 0.90 ± 0.10 0 0 4,000 10,000  NC 1706 1.00 ± 0.15 0 0 4,000 10,000  LD 1808 0.90 ± 0.10 0 0 2,500 10,000  GC 1812 1.00 ± 0.15 0 0 2,500 10,000  GC 1812 1.10 ± 0.10 0 0 1,000 4,000  GC 1812 1.10 ± 0.10 0 0 1,000 4,000  GG 1812 1.25 ± 0.15 0 0 1,000 4,000  GG 1812 1.30 ± 0.10 0 0 1,000 4,000  GG 1812 1.55 ± 0.10 0 0 1,000 4,000  GG 1812 1.55 ± 0.10 0 0 1,000 4,000  GG 1812 1.55 ± 0.10 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000  GG 1812 1.55 ± 0.15 0 0 0 1,000 4,000                                                                                                                                                  |           |                   |                                   |         |                      |           |          |
| FE 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   |                                   |         |                      |           |          |
| FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   |         |                      |           |          |
| FG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                   |         |                      |           |          |
| FL         1210         1.40 ± 0.15         0         0         2,000         8,000           FH         1210         1.55 ± 0.15         0         0         2,000         8,000           FM         1210         1.70 ± 0.20         0         0         2,000         8,000           FJ         1210         1.85 ± 0.20         0         0         2,000         8,000           FT         1210         1.90 ± 0.20         0         0         2,000         8,000           FK         1210         2.19 ± 0.20         0         0         2,000         8,000           FS         1210         2.50 ± 0.30         0         0         2,000         8,000           FS         1210         2.50 ± 0.30         0         0         1,000         4,000           NC         1706         1.00 ± 0.15         0         0         4,000         10,000           NC         1706         1.00 ± 0.15         0         0         4,000         10,000           LF         1808         0.90 ± 0.10         0         0         2,500         10,000           LF         1808         1.00 ± 0.15         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| FJ 1210 1.85 ± 0.20 0 0 2,000 8,000 FT 1210 1.90 ± 0.20 0 0 2,000 8,000 FK 1210 2.10 ± 0.20 0 0 2,000 8,000 FS 1210 2.50 ± 0.30 0 0 1,000 4,000 NA 1706 0.90 ± 0.10 0 0 4,000 10,000 LD 1808 0.90 ± 0.10 0 0 2,500 10,000 LF 1808 1.00 ± 0.15 0 0 2,500 10,000 GB 1812 1.00 ± 0.15 0 0 1,000 4,000 GC 1812 1.25 ± 0.15 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.60 ± 0.20 0 0 1,000 4,000 GG 1812 1.70 ± 0.15 0 0 1,000 4,000 GG 1812 1.70 ± 0.15 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.60 ± 0.20 0 0 1,000 4,000 GG 1812 1.70 ± 0.15 0 0 1,000 4,000 GG 1812 1.70 ± 0.15 0 0 1,000 4,000 GG 1812 1.55 ± 0.10 0 0 1,000 4,000 GG 1812 1.50 ± 0.20 0 0 500 2,000 GG 1812 2.50 ± 0.20 0 0 500 2,000 GG 1812 2.50 ± 0.20 0 0 500 2,000 HB 1825 1.15 ± 0.15 0 0 1,000 4,000 HC 1825 1.15 ± 0.15 0 0 1,000 4,000 Thickness Case Thickness ± 7" Reel 13" Reel 7" Reel 13" Reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |                                   |         |                      |           |          |
| FT 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   | 1.70 ± 0.20                       | 0       | 0                    | 2,000     | 8,000    |
| FK         1210         2.10 ± 0.20         0         0         2,000         8,000           FS         1210         2.50 ± 0.30         0         0         1,000         4,000           NA         1706         0.90 ± 0.10         0         0         4,000         10,000           NC         1706         1.00 ± 0.15         0         0         4,000         10,000           LD         1808         0.90 ± 0.10         0         0         2,500         10,000           LF         1808         1.00 ± 0.15         0         0         2,500         10,000           GB         1812         1.00 ± 0.10         0         0         1,000         4,000           GC         1812         1.10 ± 0.10         0         0         1,000         4,000           GD         1812         1.25 ± 0.15         0         0         1,000         4,000           GE         1812         1.30 ± 0.10         0         0         1,000         4,000           GH         1812         1.55 ± 0.15         0         0         1,000         4,000           GK         1812         1.55 ± 0.10         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   | 1.85 ± 0.20                       |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   |         |                      |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   | -       | -                    |           |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                   | 0       | 0                    |           |          |
| HB     1825     1.10 ± 0.15     0     0     1,000     4,000       HC     1825     1.15 ± 0.15     0     0     1,000     4,000       Thickness ± Code     Thickness ± Size!     7" Reel     13" Reel     7" Reel     13" Reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                   | 1.90 ± 0.20                       | 0       | 0                    |           | 2,000    |
| HC         1825         1.15 ± 0.15         0         0         1,000         4,000           Thickness         Case         Thickness ±         7" Reel         13" Reel         7" Reel         13" Reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                   |                                   | -       | 0                    |           |          |
| Thickness Case Thickness ± 7" Reel 13" Reel 7" Reel 13" Reel 13" Reel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   |                                   |         | -                    |           |          |
| Inickness Case Inickness ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HC        | 1825              | 1.15 ± 0.15                       |         |                      |           |          |
| Code   Size <sup>1</sup>   Range (mm)   Paper Quantitud   Blastic Quantitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                   | Thickness ± 7" Reel 13" Reel 7" F |         | 7" Reel              | 13" Reel  |          |
| rapel Qualitity   Flastic Qualitity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   |                                   |         |                      |           |          |

Package quantity based on finished chip thickness specifications.

<sup>&</sup>lt;sup>1</sup> If ordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".



### Table 2A - Chip Thickness/Tape & Reel Packaging Quantities cont'd

| Thickness | Case              | Thickness ± | Paper Q | uantity <sup>1</sup> | Plastic ( | Quantity |
|-----------|-------------------|-------------|---------|----------------------|-----------|----------|
| Code      | Size <sup>1</sup> | Range (mm)  | 7" Reel | 13" Reel             | 7" Reel   | 13" Reel |
| HD        | 1825              | 1.30 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| HE        | 1825              | 1.40 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| HF        | 1825              | 1.50 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JB        | 2220              | 1.00 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JC        | 2220              | 1.10 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JD        | 2220              | 1.30 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JE        | 2220              | 1.40 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JF        | 2220              | 1.50 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| JO        | 2220              | 2.40 ± 0.15 | 0       | 0                    | 500       | 2,000    |
| KB        | 2225              | 1.00 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| KC        | 2225              | 1.10 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| KD        | 2225              | 1.30 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| KE        | 2225              | 1.40 ± 0.15 | 0       | 0                    | 1,000     | 4,000    |
| Thickness | Case              | Thickness ± | 7" Reel | 13" Reel             | 7" Reel   | 13" Reel |
| Code      | Size <sup>1</sup> | Range (mm)  | Paper Q | uantity¹             | Plastic ( | Quantity |

Package quantity based on finished chip thickness specifications.

### Table 2B - Bulk Packaging Quantities

| Doolson  | ing Torre              | Loose Pa               | Loose Packaging         |  |  |  |
|----------|------------------------|------------------------|-------------------------|--|--|--|
| Раскад   | ing Type               | Bulk Bag               | (default)               |  |  |  |
| Packagir | ng C-Spec <sup>1</sup> | N                      | /A <sup>2</sup>         |  |  |  |
| Cas      | e Size                 | Packaging Quantities ( | (pieces/unit packaging) |  |  |  |
| EIA (in) | Metric (mm)            | Minimum                | Maximum                 |  |  |  |
| 0402     | 1005                   |                        |                         |  |  |  |
| 0603     | 1608                   |                        |                         |  |  |  |
| 0805     | 2012                   |                        | 50,000                  |  |  |  |
| 1206     | 3216                   |                        |                         |  |  |  |
| 1210     | 3225                   | 1                      |                         |  |  |  |
| 1808     | 4520                   | ] '                    |                         |  |  |  |
| 1812     | 4532                   |                        |                         |  |  |  |
| 1825     | 4564                   |                        | 20,000                  |  |  |  |
| 2220     | 5650                   |                        |                         |  |  |  |
| 2225     | 5664                   |                        |                         |  |  |  |

<sup>&</sup>lt;sup>1</sup> The "Packaging C-Spec" is a 4 to 8 digit code which identifies the packaging type and/or product grade. When ordering, the proper code must be included in the 15th through 22nd character positions of the ordering code. See "Ordering Information" section of this document for further details. Commercial Grade product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. Contact KEMET if you require a bulk bag packaging option for Automotive Grade products.

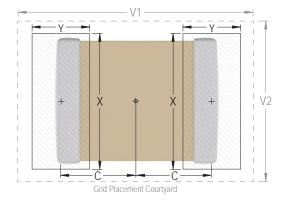
<sup>2</sup> A packaging C-Spec (see note 1 above) is not required for "Bulk Bag" packaging (excluding Anti-Static Bulk Bag and Automotive Grade products). The 15th through 22nd character positions of the ordering code should be left blank. All product ordered without a packaging C-Spec will default to out standard "Bulk Bag" packaging.

<sup>&</sup>lt;sup>1</sup> If ordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".



Table 3 - Chip Capacitor Land Pattern Design Recommendations per IPC-7351

| EIA<br>Size<br>Code | Metric<br>Size<br>Code | Density Level A:<br>Maximum (Most)<br>Land Protrusion (mm) |      |      | )    |      | Density Level B:<br>Median (Nominal)<br>Land Protrusion (mm) |      |      | Density Level C:<br>Minimum (Least)<br>Land Protrusion (mm) |      |      |      |      |      |      |
|---------------------|------------------------|------------------------------------------------------------|------|------|------|------|--------------------------------------------------------------|------|------|-------------------------------------------------------------|------|------|------|------|------|------|
|                     |                        | С                                                          | Υ    | Х    | V1   | V2   | С                                                            | Υ    | Х    | V1                                                          | V2   | С    | Υ    | Х    | V1   | V2   |
| 0402                | 1005                   | 0.50                                                       | 0.72 | 0.72 | 2.20 | 1.20 | 0.45                                                         | 0.62 | 0.62 | 1.90                                                        | 1.00 | 0.40 | 0.52 | 0.52 | 1.60 | 0.80 |
| 0603                | 1608                   | 0.90                                                       | 1.15 | 1.10 | 4.00 | 2.10 | 0.80                                                         | 0.95 | 1.00 | 3.10                                                        | 1.50 | 0.60 | 0.75 | 0.90 | 2.40 | 1.20 |
| 0805                | 2012                   | 1.00                                                       | 1.35 | 1.55 | 4.40 | 2.60 | 0.90                                                         | 1.15 | 1.45 | 3.50                                                        | 2.00 | 0.75 | 0.95 | 1.35 | 2.80 | 1.70 |
| 1206                | 3216                   | 1.60                                                       | 1.35 | 1.90 | 5.60 | 2.90 | 1.50                                                         | 1.15 | 1.80 | 4.70                                                        | 2.30 | 1.40 | 0.95 | 1.70 | 4.00 | 2.00 |
| 1210                | 3225                   | 1.60                                                       | 1.35 | 2.80 | 5.65 | 3.80 | 1.50                                                         | 1.15 | 2.70 | 4.70                                                        | 3.20 | 1.40 | 0.95 | 2.60 | 4.00 | 2.90 |
| 1210 <sup>1</sup>   | 3225                   | 1.50                                                       | 1.60 | 2.90 | 5.60 | 3.90 | 1.40                                                         | 1.40 | 2.80 | 4.70                                                        | 3.30 | 1.30 | 1.20 | 2.70 | 4.00 | 3.00 |
| 1808                | 4520                   | 2.30                                                       | 1.75 | 2.30 | 7.40 | 3.30 | 2.20                                                         | 1.55 | 2.20 | 6.50                                                        | 2.70 | 2.10 | 1.35 | 2.10 | 5.80 | 2.40 |
| 1812                | 4532                   | 2.15                                                       | 1.60 | 3.60 | 6.90 | 4.60 | 2.05                                                         | 1.40 | 3.50 | 6.00                                                        | 4.00 | 1.95 | 1.20 | 3.40 | 5.30 | 3.70 |
| 1825                | 4564                   | 2.15                                                       | 1.60 | 6.90 | 6.90 | 7.90 | 2.05                                                         | 1.40 | 6.80 | 6.00                                                        | 7.30 | 1.95 | 1.20 | 6.70 | 5.30 | 7.00 |
| 2220                | 5650                   | 2.75                                                       | 1.70 | 5.50 | 8.20 | 6.50 | 2.65                                                         | 1.50 | 5.40 | 7.30                                                        | 5.90 | 2.55 | 1.30 | 5.30 | 6.60 | 5.60 |
| 2225                | 5664                   | 2.70                                                       | 1.70 | 6.90 | 8.10 | 7.90 | 2.60                                                         | 1.50 | 6.80 | 7.20                                                        | 7.30 | 2.50 | 1.30 | 6.70 | 6.50 | 7.00 |


¹ Only for capacitance values ≥ 22 μF

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes.

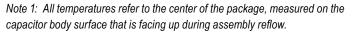
Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).

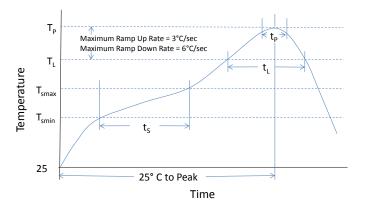
Image below based on Density Level B for an EIA 1210 case size.





### **Soldering Process**


#### **Recommended Soldering Technique:**


- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

#### **Recommended Reflow Soldering Profile:**

KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

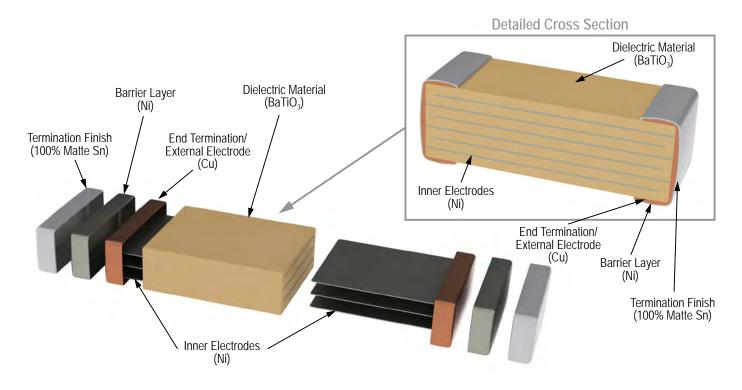
| Profile Feature                                                  | Terminati          | on Finish          |
|------------------------------------------------------------------|--------------------|--------------------|
|                                                                  | SnPb               | 100% Matte Sn      |
| Preheat/Soak                                                     |                    |                    |
| Temperature Minimum (T <sub>Smin</sub> )                         | 100°C              | 150°C              |
| Temperature Maximum (T <sub>Smax</sub> )                         | 150°C              | 200°C              |
| Time ( $t_s$ ) from $T_{Smin}$ to $T_{Smax}$                     | 60 – 120 seconds   | 60 – 120 seconds   |
| Ramp-Up Rate $(T_L \text{ to } T_P)$                             | 3°C/second maximum | 3°C/second maximum |
| Liquidous Temperature (T <sub>L</sub> )                          | 183°C              | 217°C              |
| Time Above Liquidous (t <sub>L</sub> )                           | 60 – 150 seconds   | 60 – 150 seconds   |
| Peak Temperature (T <sub>P</sub> )                               | 235°C              | 260°C              |
| Time Within 5°C of Maximum<br>Peak Temperature (t <sub>P</sub> ) | 20 seconds maximum | 30 seconds maximum |
| Ramp-Down Rate $(T_P \text{ to } T_L)$                           | 6°C/second maximum | 6°C/second maximum |
| Time 25°C to Peak<br>Temperature                                 | 6 minutes maximum  | 8 minutes maximum  |







### Table 4 – Performance & Reliability: Test Methods and Conditions


| Stress                 | Reference              |                                                                                                                                                                                                                                                                                          | Test or Inspection M                                                                                          | lethod                                |  |  |  |  |  |
|------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| Terminal Strength      | JIS-C-6429             | Appendix 1, Note: Force of 1.8                                                                                                                                                                                                                                                           | kg for 60 seconds.                                                                                            |                                       |  |  |  |  |  |
| Board Flex             | JIS-C-6429             | Appendix 2, Note: Standard ter Flexible termination system – 3                                                                                                                                                                                                                           |                                                                                                               | minimum) for all except 3 mm for COG. |  |  |  |  |  |
|                        |                        | Magnification 50 X. Conditions                                                                                                                                                                                                                                                           | :                                                                                                             |                                       |  |  |  |  |  |
| Coldorability          | L CTD 000              | a) Method B, 4 hours at                                                                                                                                                                                                                                                                  | 155°C, dry heat at 235°C                                                                                      |                                       |  |  |  |  |  |
| Solderability          | J-STD-002              | b) Method B at 215°C ca                                                                                                                                                                                                                                                                  | tegory 3                                                                                                      |                                       |  |  |  |  |  |
|                        |                        | c) Method D, category 3                                                                                                                                                                                                                                                                  | at 260°C                                                                                                      |                                       |  |  |  |  |  |
| Temperature Cycling    | JESD22 Method JA-104   | 1,000 Cycles (-55°C to +125°C                                                                                                                                                                                                                                                            | ). Measurement at 24 hours                                                                                    | +/- 4 hours after test conclusion.    |  |  |  |  |  |
| Biased Humidity        | MIL-STD-202 Method 103 | Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor.  Measurement at 24 hours +/- 4 hours after test conclusion.  Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor.  Measurement at 24 hours +/- 4 hours after test conclusion. |                                                                                                               |                                       |  |  |  |  |  |
| Moisture Resistance    | MIL-STD-202 Method 106 | t = 24 hours/cycle. Steps 7a an                                                                                                                                                                                                                                                          | t = 24 hours/cycle. Steps 7a and 7b not required.  Measurement at 24 hours +/- 4 hours after test conclusion. |                                       |  |  |  |  |  |
| Thermal Shock          | MIL-STD-202 Method 107 |                                                                                                                                                                                                                                                                                          | of cycles required – 300. Max                                                                                 | rimum transfer time – 20 seconds.     |  |  |  |  |  |
|                        |                        | 1,000 hours at 125°C with 2 X rated voltage applied excluding the following:                                                                                                                                                                                                             |                                                                                                               |                                       |  |  |  |  |  |
|                        | MIL-STD-202 Method 108 | Case Size                                                                                                                                                                                                                                                                                | Capacitance                                                                                                   | Applied Voltage                       |  |  |  |  |  |
| High Temperature Life  | /EIA-198               | 0603 & 0805                                                                                                                                                                                                                                                                              | ≥ 1.0 µF                                                                                                      | 1.5 X                                 |  |  |  |  |  |
|                        |                        | 1206 & 1210                                                                                                                                                                                                                                                                              | ≥ 10 µF                                                                                                       | 1.3 A                                 |  |  |  |  |  |
| Storage Life           | MIL-STD-202 Method 108 | 150°C, 0 VDC for 1,000 hours.                                                                                                                                                                                                                                                            |                                                                                                               |                                       |  |  |  |  |  |
| Vibration              | MIL-STD-202 Method 204 | 5 g's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz                                     |                                                                                                               |                                       |  |  |  |  |  |
| Mechanical Shock       | MIL-STD-202 Method 213 | Figure 1 of Method 213, Condi                                                                                                                                                                                                                                                            | Figure 1 of Method 213, Condition F.                                                                          |                                       |  |  |  |  |  |
| Resistance to Solvents | MIL-STD-202 Method 215 | Add aqueous wash chemical, (                                                                                                                                                                                                                                                             | OKEM Clean or equivalent.                                                                                     |                                       |  |  |  |  |  |

## **Storage & Handling**

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature- reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.



# **Construction (Typical)**





### **Capacitor Marking (Optional):**

These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Laser marking option is not available on:

- COG, Ultra Stable X8R and Y5V dielectric devices
- EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.
- · KPS Commercial and Automotive Grade stacked devices.
- X7R dielectric products in capacitance values outlined below

| EIA Case Size | Metric Size Code | Capacitance |
|---------------|------------------|-------------|
| 0603          | 1608             | ≤ 170 pF    |
| 0805          | 2012             | ≤ 150 pF    |
| 1206          | 3216             | ≤ 910 pF    |
| 1210          | 3225             | ≤ 2,000 pF  |
| 1808          | 4520             | ≤ 3,900 pF  |
| 1812          | 4532             | ≤ 6,700 pF  |
| 1825          | 4564             | ≤ 0.018 µF  |
| 2220          | 5650             | ≤ 0.027 µF  |
| 2225          | 5664             | ≤ 0.033 µF  |

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100  $\mu$ F. Orientation of marking is vendor optional.





# Capacitor Marking (Optional) cont'd

|           |                  | Capacit  | ance (p                               | F) For \                                |       | Alpha/ | Numera  | I Identifi | ers        |             |  |  |
|-----------|------------------|----------|---------------------------------------|-----------------------------------------|-------|--------|---------|------------|------------|-------------|--|--|
|           |                  | <u> </u> | , , , , , , , , , , , , , , , , , , , | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | Numera |         |            | <u></u>    |             |  |  |
| Alpha     | 9                | 0        | 1                                     | 2                                       | 3     | 4      | 5       | 6          | 7          | 8           |  |  |
| Character | Capacitance (pF) |          |                                       |                                         |       |        |         |            |            |             |  |  |
| А         | 0.1              | 10       | 10                                    | 100                                     | 1,000 | 10,000 | 100,000 | 1,000,000  | 10,000,000 | 100,000,000 |  |  |
| В         | 0.11             | 1.1      | 11                                    | 110                                     | 1,100 | 11,000 | 110,000 | 1,100,000  | 11,000,000 | 110,000,000 |  |  |
| С         | 0.12             | 12       | 12                                    | 120                                     | 1,200 | 12,000 | 120,000 | 1,200,000  | 12,000,000 | 120,000,000 |  |  |
| D         | 0.13             | 13       | 13                                    | 130                                     | 1,300 | 13,000 | 130,000 | 1,300,000  | 13,000,000 | 130,000,000 |  |  |
| Е         | 0.15             | 15       | 15                                    | 150                                     | 1,500 | 15,000 | 150,000 | 1,500,000  | 15,000,000 | 150,000,000 |  |  |
| F         | 0.16             | 16       | 16                                    | 160                                     | 1,600 | 16,000 | 160,000 | 1,600,000  | 16,000,000 | 160,000,000 |  |  |
| G         | 0.18             | 18       | 18                                    | 180                                     | 1,800 | 18,000 | 180,000 | 1,800,000  | 18,000,000 | 180,000,000 |  |  |
| Н         | 0.2              | 20       | 20                                    | 200                                     | 2,000 | 20,000 | 200,000 | 2,000,000  | 20,000,000 | 200,000,000 |  |  |
| J         | 0.22             | 22       | 22                                    | 220                                     | 2,200 | 22,000 | 220,000 | 2,200,000  | 22,000,000 | 220,000,000 |  |  |
| K         | 0.24             | 2.4      | 24                                    | 240                                     | 2,400 | 24,000 | 240,000 | 2,400,000  | 24,000,000 | 240,000,000 |  |  |
| L         | 0.27             | 2.7      | 27                                    | 270                                     | 2,700 | 27,000 | 270,000 | 2,700,000  | 27,000,000 | 270,000,000 |  |  |
| M         | 0.3              | 3 0      | 30                                    | 300                                     | 3,000 | 30,000 | 300,000 | 3,000,000  | 30,000,000 | 300,000,000 |  |  |
| N         | 0.33             | 3 3      | 33                                    | 330                                     | 3,300 | 33,000 | 330,000 | 3,300,000  | 33,000,000 | 330,000,000 |  |  |
| Р         | 0.36             | 3 6      | 36                                    | 360                                     | 3,600 | 36,000 | 360,000 | 3,600,000  | 36,000,000 | 360,000,000 |  |  |
| Q         | 0.39             | 3 9      | 39                                    | 390                                     | 3,900 | 39,000 | 390,000 | 3,900,000  | 39,000,000 | 390,000,000 |  |  |
| R         | 0.43             | 4 3      | 43                                    | 430                                     | 4,300 | 43,000 | 430,000 | 4,300,000  | 43,000,000 | 430,000,000 |  |  |
| S         | 0.47             | 4.7      | 47                                    | 470                                     | 4,700 | 47,000 | 470,000 | 4,700,000  | 47,000,000 | 470,000,000 |  |  |
| Т         | 0.51             | 5.1      | 51                                    | 510                                     | 5,100 | 51,000 | 510,000 | 5,100,000  | 51,000,000 | 510,000,000 |  |  |
| U         | 0.56             | 5 6      | 56                                    | 560                                     | 5,600 | 56,000 | 560,000 | 5,600,000  | 56,000,000 | 560,000,000 |  |  |
| V         | 0.62             | 62       | 62                                    | 620                                     | 6,200 | 62,000 | 620,000 | 6,200,000  | 62,000,000 | 620,000,000 |  |  |
| W         | 0.68             | 68       | 68                                    | 680                                     | 6,800 | 68,000 | 680,000 | 6,800,000  | 68,000,000 | 680,000,000 |  |  |
| Х         | 0.75             | 7 5      | 75                                    | 750                                     | 7,500 | 75,000 | 750,000 | 7,500,000  | 75,000,000 | 750,000,000 |  |  |
| Υ         | 0.82             | 8 2      | 82                                    | 820                                     | 8,200 | 82,000 | 820,000 | 8,200,000  | 82,000,000 | 820,000,000 |  |  |
| Z         | 0.91             | 9.1      | 91                                    | 910                                     | 9,100 | 91,000 | 910,000 | 9,100,000  | 91,000,000 | 910,000,000 |  |  |
| а         | 0.25             | 25       | 25                                    | 250                                     | 2,500 | 25,000 | 250,000 | 2,500,000  | 25,000,000 | 250,000,000 |  |  |
| b         | 0.35             | 3 5      | 35                                    | 350                                     | 3,500 | 35,000 | 350,000 | 3,500,000  | 35,000,000 | 350,000,000 |  |  |
| d         | 0.4              | 4 0      | 40                                    | 400                                     | 4,000 | 40,000 | 400,000 | 4,000,000  | 40,000,000 | 400,000,000 |  |  |
| е         | 0.45             | 4 5      | 45                                    | 450                                     | 4,500 | 45,000 | 450,000 | 4,500,000  | 45,000,000 | 450,000,000 |  |  |
| f         | 0.5              | 5 0      | 50                                    | 500                                     | 5,000 | 50,000 | 500,000 | 5,000,000  | 50,000,000 | 500,000,000 |  |  |
| m         | 0.6              | 60       | 60                                    | 600                                     | 6,000 | 60,000 | 600,000 | 6,000,000  | 60,000,000 | 600,000,000 |  |  |
| n         | 0.7              | 70       | 70                                    | 700                                     | 7,000 | 70,000 | 700,000 | 7,000,000  | 70,000,000 | 700,000,000 |  |  |
| t         | 0.8              | 8 0      | 80                                    | 800                                     | 8,000 | 80,000 | 800,000 | 8,000,000  | 80,000,000 | 800,000,000 |  |  |
| у         | 0.9              | 90       | 90                                    | 900                                     | 9,000 | 90,000 | 900,000 | 9,000,000  | 90,000,000 | 900,000,000 |  |  |



### **Tape & Reel Packaging Information**

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

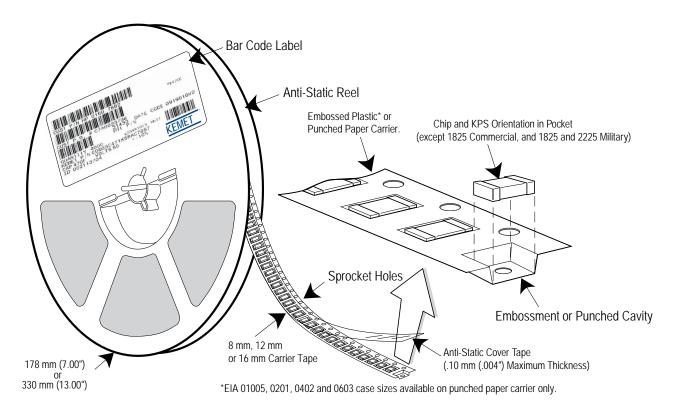



Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

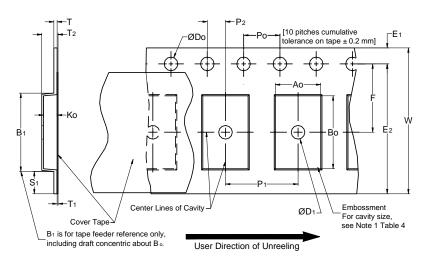
|                      | Tape | Embosse | ed Plastic         | Punched Paper |                    |  |
|----------------------|------|---------|--------------------|---------------|--------------------|--|
| <b>EIA Case Size</b> | Size | 7" Reel | 13" Reel           | 7" Reel       | 13" Reel           |  |
|                      | (W)* | Pitch   | (P <sub>1</sub> )* | Pitch         | (P <sub>1</sub> )* |  |
| 01005 – 0402         | 8    |         |                    | 2             | 2                  |  |
| 0603                 | 8    |         |                    | 2/4           | 2/4                |  |
| 0805                 | 8    | 4       | 4                  | 4             | 4                  |  |
| 1206 – 1210          | 8    | 4       | 4                  | 4             | 4                  |  |
| 1805 – 1808          | 12   | 4       | 4                  |               |                    |  |
| ≥ 1812               | 12   | 8       | 8                  |               |                    |  |
| KPS 1210             | 12   | 8       | 8                  |               |                    |  |
| KPS 1812 & 2220      | 16   | 12      | 12                 |               |                    |  |
| Array 0508 & 0612    | 8    | 4       | 4                  |               |                    |  |

<sup>\*</sup>Refer to Figures 1 & 2 for W and  $P_1$  carrier tape reference locations.

### New 2 mm Pitch Reel Options\*

| Packaging<br>Ordering Code<br>(C-Spec) | Packaging Type/Options             |
|----------------------------------------|------------------------------------|
| C-3190                                 | Automotive grade 7" reel unmarked  |
| C-3191                                 | Automotive grade 13" reel unmarked |
| C-7081                                 | Commercial grade 7" reel unmarked  |
| C-7082                                 | Commercial grade 13" reel unmarked |

<sup>\* 2</sup> mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.


#### Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- Lower placement costs
- Double the parts on each reel results in fewer reel changes and increased efficiency
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste

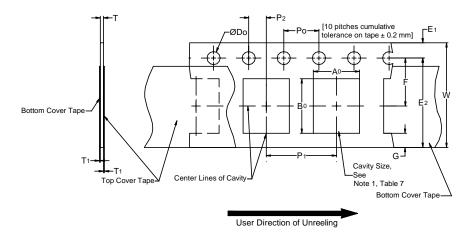
<sup>\*</sup>Refer to Tables 6 & 7 for tolerance specifications.



### Figure 1 – Embossed (Plastic) Carrier Tape Dimensions



### Table 6 – Embossed (Plastic) Carrier Tape Dimensions


Metric will govern

|           | Constant Dimensions — Millimeters (Inches) |                                  |                              |                             |                              |                           |                                  |                                |                           |  |  |  |
|-----------|--------------------------------------------|----------------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|----------------------------------|--------------------------------|---------------------------|--|--|--|
| Tape Size | D <sub>0</sub>                             | D <sub>1</sub> Minimum<br>Note 1 | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>               | R Reference<br>Note 2     | S <sub>1</sub> Minimum<br>Note 3 | T<br>Maximum                   | T <sub>1</sub><br>Maximum |  |  |  |
| 8 mm      |                                            | 1.0<br>(0.039)                   |                              |                             |                              | 25.0<br>(0.984)           |                                  |                                |                           |  |  |  |
| 12 mm     | 1.5 +0.10/-0.0<br>(0.059 +0.004/-0.0)      | 1.5                              | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002)  | 30                        | 0.600<br>(0.024)                 | 0.600<br>(0.024)               | 0.100<br>(0.004)          |  |  |  |
| 16 mm     |                                            | (0.059)                          |                              |                             |                              | (1.181)                   |                                  |                                |                           |  |  |  |
|           |                                            |                                  | Variable Dime                | ensions — Mil               | limeters (Inch               | ies)                      |                                  |                                |                           |  |  |  |
| Tape Size | Pitch                                      | B <sub>1</sub> Maximum<br>Note 4 | E <sub>2</sub><br>Minimum    | F                           | P <sub>1</sub>               | T <sub>2</sub><br>Maximum | W<br>Maximum                     | A <sub>o</sub> ,B <sub>o</sub> | & K <sub>0</sub>          |  |  |  |
| 8 mm      | Single (4 mm)                              | 4.35<br>(0.171)                  | 6.25<br>(0.246)              | 3.5 ±0.05<br>(0.138 ±0.002) | 4.0 ±0.10<br>(0.157 ±0.004)  | 2.5<br>(0.098)            | 8.3<br>(0.327)                   |                                |                           |  |  |  |
| 12 mm     | Single (4 mm) &<br>Double (8 mm)           | 8.2<br>(0.323)                   | 10.25<br>(0.404)             | 5.5 ±0.05<br>(0.217 ±0.002) | 8.0 ±0.10<br>(0.315 ±0.004)  | 4.6<br>(0.181)            | 12.3<br>(0.484)                  | Note 5                         |                           |  |  |  |
| 16 mm     | Triple (12 mm)                             | 12.1<br>(0.476)                  | 14.25<br>(0.561)             | 7.5 ±0.05<br>(0.138 ±0.002) | 12.0 ±0.10<br>(0.157 ±0.004) | 4.6<br>(0.181)            | 16.3<br>(0.642)                  |                                |                           |  |  |  |

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).
- 3. If S, < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
- 4. B, dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by  $A_{rr}$ ,  $B_{o}$  and  $K_{o}$  shall surround the component with sufficient clearance that:
  - (a) the component does not protrude above the top surface of the carrier tape.
  - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
  - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
  - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
  - (e) for KPS Series product, A<sub>a</sub> and B<sub>a</sub> are measured on a plane 0.3 mm above the bottom of the pocket.
  - (f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.



### Figure 2 – Punched (Paper) Carrier Tape Dimensions



### Table 7 – Punched (Paper) Carrier Tape Dimensions

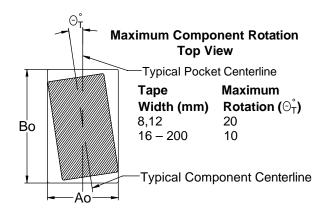
Metric will govern

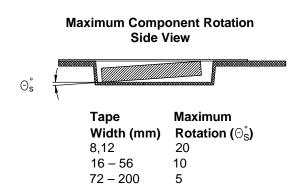
|           | Constant Dimensions — Millimeters (Inches) |                              |                             |                             |                            |                 |                       |  |  |  |  |  |
|-----------|--------------------------------------------|------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------|-----------------------|--|--|--|--|--|
| Tape Size | D <sub>0</sub>                             | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>              | T <sub>1</sub> Maximum     | G Minimum       | R Reference<br>Note 2 |  |  |  |  |  |
| 8 mm      | 1.5 +0.10 -0.0<br>(0.059 +0.004 -0.0)      | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002) | 0.10<br>(0.004)<br>Maximum | 0.75<br>(0.030) | 25<br>(0.984)         |  |  |  |  |  |
|           | Variable Dimensions — Millimeters (Inches) |                              |                             |                             |                            |                 |                       |  |  |  |  |  |
| Tape Size | Pitch                                      | E2 Minimum                   | F                           | P <sub>1</sub>              | T Maximum                  | W Maximum       | $A_0 B_0$             |  |  |  |  |  |
| 8 mm      | Half (2 mm)                                | 6.25                         | 3.5 ±0.05                   | 2.0 ±0.05<br>(0.079 ±0.002) | 1.1                        | 8.3<br>(0.327)  | Note 1                |  |  |  |  |  |
| 8 mm      | Single (4 mm)                              | (0.246)                      | (0.138 ±0.002)              | 4.0 ±0.10<br>(0.157 ±0.004) | (0.098)                    | 8.3<br>(0.327)  | NOTE I                |  |  |  |  |  |

- 1. The cavity defined by A<sub>a</sub>, B<sub>a</sub> and T shall surround the component with sufficient clearance that:
  - a) the component does not protrude beyond either surface of the carrier tape.
  - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
  - c) rotation of the component is limited to 20° maximum (see Figure 3).
  - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).
  - e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).



### **Packaging Information Performance Notes**


- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:


| Tape Width   | Peel Strength                    |  |
|--------------|----------------------------------|--|
| 8 mm         | 0.1 to 1.0 Newton (10 to 100 gf) |  |
| 12 and 16 mm | 0.1 to 1.3 Newton (10 to 130 gf) |  |

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA Standards 556 and 624.

### Figure 3 – Maximum Component Rotation





## Figure 4 - Maximum Lateral Movement

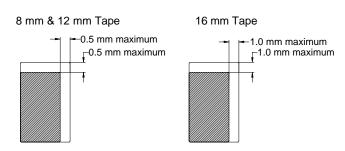



Figure 5 - Bending Radius

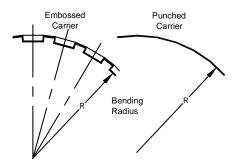
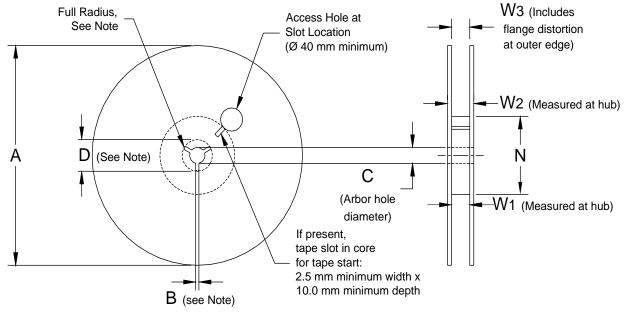






Figure 6 – Reel Dimensions



Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 8 - Reel Dimensions

Metric will govern

| Constant Dimensions — Millimeters (Inches) |                                                                   |                                       |                                        |                                                   |  |
|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|--|
| Tape Size                                  | A                                                                 | B Minimum                             | С                                      | D Minimum                                         |  |
| 8 mm                                       | 178 ±0.20<br>(7.008 ±0.008)<br>or<br>330 ±0.20<br>(13.000 ±0.008) | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |  |
| 12 mm                                      |                                                                   |                                       |                                        |                                                   |  |
| 16 mm                                      |                                                                   |                                       |                                        |                                                   |  |
| Variable Dimensions — Millimeters (Inches) |                                                                   |                                       |                                        |                                                   |  |
| Tape Size                                  | N Minimum                                                         | W <sub>1</sub>                        | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |  |
| 8 mm                                       | 50<br>(1.969)                                                     | 8.4 +1.5/-0.0<br>(0.331 +0.059/-0.0)  | 14.4<br>(0.567)                        |                                                   |  |
| 12 mm                                      |                                                                   | 12.4 +2.0/-0.0<br>(0.488 +0.078/-0.0) | 18.4<br>(0.724)                        | Shall accommodate tape width without interference |  |
| 16 mm                                      |                                                                   | 16.4 +2.0/-0.0<br>(0.646 +0.078/-0.0) | 22.4<br>(0.882)                        |                                                   |  |



### Figure 7 – Tape Leader & Trailer Dimensions

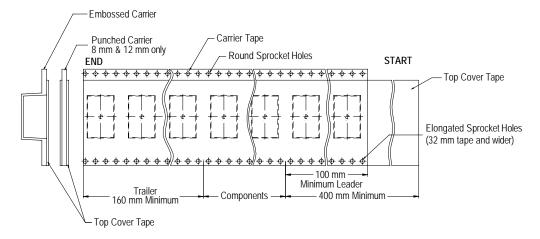
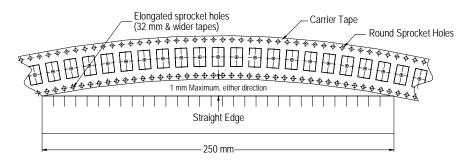




Figure 8 – Maximum Camber





# **KEMET Corporation World Headquarters**

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

# **Corporate Offices**

Fort Lauderdale, FL Tel: 954-766-2800

### **North America**

#### Northeast

Wilmington, MA Tel: 978-658-1663

#### Southeast

Lake Mary, FL Tel: 407-855-8886

### Central

Novi. MI

Tel: 248-994-1030

Irving, TX

Tel: 972-915-6041

#### West

Milpitas, CA Tel: 408-433-9950

#### Mexico

Guadalajara, Jalisco Tel: 52-33-3123-2141

### **Europe**

## Southern Europe

Sasso Marconi, Italy Tel: 39-051-939111

Skopje, Macedonia Tel: 389-2-55-14-623

### **Central Europe**

Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

### **Northern Europe**

Wyboston, United Kingdom Tel: 44-1480-273082

Espoo, Finland Tel: 358-9-5406-5000

### Asia

#### **Northeast Asia**

Hong Kong

Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5877-1075

Shanghai, China Tel: 86-21-6447-0707

Seoul, South Korea Tel: 82-2-6294-0550

Taipei, Taiwan Tel: 886-2-27528585

#### **Southeast Asia**

Singapore

Tel: 65-6701-8033

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.



#### **Disclaimer**

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product—related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.